6 publications
-
A Palladium-Catalyst Stabilized in the Chiral Environment of a Monoclonal Antibody in Water
-
Chem. Commun. 2020, 56, 1605-1607, 10.1039/c9cc08756g
We report the first preparation of a monoclonal antibody (mAb) that can immobilize a palladium (Pd)-complex. The allylic amination reaction using a supramolecular catalyst of the Pd-complex with mAb selectively gives the (R)-enantiomer product.
Notes: Recalculated TON
-
Artificial Metalloenzymes Through Cysteine-Selective Conjugation of Phosphines to Photoactive Yellow Protein
-
ChemBioChem 2010, 11, 1236-1239, 10.1002/cbic.201000159
Pinning phosphines on proteins: A method for the cysteine‐selective bioconjugation of phosphines has been developed. The photoactive yellow protein has been site‐selectively functionalized with phosphine ligands and phosphine transition metal complexes to afford artificial metalloenzymes that are active in palladium‐catalysed allylic nucleophilic substitution reactions.
Metal: PdHost protein: Photoactive Yellow Protein (PYP)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: ---
-
Carbene in Cupredoxin Protein Scaffolds: Replacement of a Histidine Ligand in the Active Site Substantially Alters Copper Redox Properties
-
Angew. Chem. Int. Ed. 2018, 130, 10837-10842, 10.1002/ange.201807168
Im Tausch gegen NHC: Die Einfügung eines N‐heterocyclischen Carbenliganden (grün/blau) als Ersatz für His in das aktive Zentrum des Redoxenzyms Azurin rekonstituiert das T1‐Kupferzentrum. Der resultierende Komplex ist spektroskopisch kaum unterscheidbar von der N‐Bindung von His oder N‐Methylimidazol, senkt aber signifikant das Reduktionspotential des Kupferzentrums und erleichtert dadurch Elektronentransferprozesse.
Notes: ---
-
Photoinduced Electron Transfer within Supramolecular Hemoprotein Co-Assemblies and Heterodimers Containing Fe and Zn Porphyrins
-
J. Inorg. Biochem. 2019, 193, 42-51, 10.1016/j.jinorgbio.2019.01.001
Electron transfer (ET) events occurring within metalloprotein complexes are among the most important classes of reactions in biological systems. This report describes a photoinduced electron transfer between Zn porphyrin and Fe porphyrin within a supramolecular cytochrome b562 (Cyt b562) co-assembly or heterodimer with a well-defined rigid structure formed by a metalloporphyrin–heme pocket interaction and a hydrogen-bond network at the protein interface. The photoinduced charge separation (CS: kCS = 320–600 s−1) and subsequent charge recombination (CR: kCR = 580–930 s−1) were observed in both the Cyt b562 co-assembly and the heterodimer. In contrast, interestingly, no ET events were observed in a system comprised of a flexible and structurally-undefined co-assembly and heterodimers which lack the key hydrogen-bond interaction at the protein interface. Moreover, analysis of the kinetic constants of CS and CR of the heterodimer using the Marcus equation suggests that a single-step ET reaction occurs in the system. These findings provide strong support that the rigid hemoprotein-assembling system containing an appropriate hydrogen-bond network at the protein interface is essential for monitoring the ET reaction.
Notes: ---
-
Reconstitution of [Fe]-Hydrogenase Using Model Complexes
-
Nat. Chem. 2015, 7, 995-1002, 10.1038/Nchem.2382
[Fe]-Hydrogenase catalyses the reversible hydrogenation of a methenyltetrahydromethanopterin substrate, which is an intermediate step during the methanogenesis from CO2 and H2. The active site contains an iron-guanylylpyridinol cofactor, in which Fe2+ is coordinated by two CO ligands, as well as an acyl carbon atom and a pyridinyl nitrogen atom from a 3,4,5,6-substituted 2-pyridinol ligand. However, the mechanism of H2 activation by [Fe]-hydrogenase is unclear. Here we report the reconstitution of [Fe]-hydrogenase from an apoenzyme using two FeGP cofactor mimics to create semisynthetic enzymes. The small-molecule mimics reproduce the ligand environment of the active site, but are inactive towards H2 binding and activation on their own. We show that reconstituting the enzyme using a mimic that contains a 2-hydroxypyridine group restores activity, whereas an analogous enzyme with a 2-methoxypyridine complex was essentially inactive. These findings, together with density functional theory computations, support a mechanism in which the 2-hydroxy group is deprotonated before it serves as an internal base for heterolytic H2 cleavage.
Metal: FeLigand type: Amino acidHost protein: Apo-[Fe]-hydrogenase from M. jannaschiiAnchoring strategy: CovalentOptimization: ChemicalNotes: DFT calculations of the reaction mechanism.
-
Semisynthesis of Bipyridyl-Alanine Cytochrome c Mutants: Novel Proteins with Enhanced Electron-Transfer Properties
-
J. Am. Chem. Soc. 1993, 115, 8455-8456, 10.1021/ja00071a068
n/a
Notes: No catalysis