2 publications

2 publications

Engineering a Dirhodium Artificial Metalloenzyme for Selective Olefin Cyclopropanation

Lewis, J.C.

Nat. Commun. 2015, 6, 10.1038/ncomms8789

Artificial metalloenzymes (ArMs) formed by incorporating synthetic metal catalysts into protein scaffolds have the potential to impart to chemical reactions selectivity that would be difficult to achieve using metal catalysts alone. In this work, we covalently link an alkyne-substituted dirhodium catalyst to a prolyl oligopeptidase containing a genetically encoded L-4-azidophenylalanine residue to create an ArM that catalyses olefin cyclopropanation. Scaffold mutagenesis is then used to improve the enantioselectivity of this reaction, and cyclopropanation of a range of styrenes and donor–acceptor carbene precursors were accepted. The ArM reduces the formation of byproducts, including those resulting from the reaction of dirhodium–carbene intermediates with water. This shows that an ArM can improve the substrate specificity of a catalyst and, for the first time, the water tolerance of a metal-catalysed reaction. Given the diversity of reactions catalysed by dirhodium complexes, we anticipate that dirhodium ArMs will provide many unique opportunities for selective catalysis.

Metal: Rh
Ligand type: Poly-carboxylic acid
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Reaction: Cyclopropanation
Max TON: 74
ee: 92
PDB: ---
Notes: ---

Engineering Dirhodium Artificial Metalloenzymes for Diazo Coupling Cascade Reactions

Lewis, J.C.; Roux, B.

Angew. Chem. Int. Ed. 2021, 60, 23672-23677, 10.1002/anie.202107982

Artificial metalloenzymes (ArMs) are commonly used to control the stereoselectivity of catalytic reactions, but controlling chemoselectivity remains challenging. In this study, we engineer a dirhodium ArM to catalyze diazo cross-coupling to form an alkene that, in a one-pot cascade reaction, is reduced to an alkane with high enantioselectivity (typically >99 % ee) by an alkene reductase. The numerous protein and small molecule components required for the cascade reaction had minimal effect on ArM catalysis. Directed evolution of the ArM led to improved yields and E/Z selectivities for a variety of substrates, which translated to cascade reaction yields. MD simulations of ArM variants were used to understand the structural role of the cofactor on ArM conformational dynamics. These results highlight the ability of ArMs to control both catalyst stereoselectivity and chemoselectivity to enable reactions in complex media that would otherwise lead to undesired side reactions.

Metal: Rh
Ligand type: Dirhodium
Anchoring strategy: Covalent
Optimization: ---
Max TON: ---
ee: >99
PDB: ---
Notes: 61% max combined yield for cascade reactions