4 publications

4 publications

Artificial Metalloenzymes for Enantioselective Catalysis: The Phenomenon of Protein Accelerated Catalysis

Ward, T. R.

J. Organomet. Chem., 2004, 10.1016/j.jorganchem.2004.09.032


Metal: Rh
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Hydrogenation
Max TON: ---
ee: 94
PDB: ---
Notes: Reduction of acetamidoacrylic acid. 3.0-fold protein acceleration.

Metal: Rh
Host protein: Avidin (Av)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Hydrogenation
Max TON: ---
ee: 39
PDB: ---
Notes: Reduction of acetamidoacrylic acid. 12.0-fold protein acceleration.

Burkavidin: A Novel Secreted Biotin-Binding Protein from the Human Pathogen Burkholderia Pseudomallei

Creus, M.

Protein Expression Purif., 2011, 10.1016/j.pep.2011.01.003


Metal: Rh
Ligand type: Diphenylphosphine
Host protein: Burkavidin
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Hydrogenation
Max TON: ~110
ee: 65
PDB: ---
Notes: ---

Counter Propagation Artificial Neural Networks Modeling of an Enantioselectivity of Artificial Metalloenzymes

Novič, M.

Mol. Divers., 2007, 10.1007/s11030-008-9068-x


Metal: Rh
Ligand type: Diphenylphosphine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Hydrogenation
Max TON: ---
ee: 94
PDB: ---
Notes: Computational prediction of the enantioselectivity of the hydrogenation reaction catalysed by the ArM.

Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes

Jarvis, A. G.; Kamer, P. C. J.

Angew. Chem., Int. Ed., 2017, 10.1002/ange.201705753


Metal: Rh
Ligand type: Acac; Diphenylphosphine
Anchoring strategy: Cystein-maleimide
Optimization: Chemical & genetic
Reaction: Hydroformylation
Max TON: 409
ee: ---
PDB: ---
Notes: Selectivity for the linear product over the branched product