Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

35 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

8-Amino-5,6,7,8-tetrahydroquinoline in Iridium(III) Biotinylated Cp* Complex as Artificial Imine Reductase

Diamine ligands I–IV coordinated to an iridium metal complex with the biotin moiety anchored to the Cp* ring were investigated. This strategy, in contrast to the traditional biotin–streptavidin technology that uses a biotinylated ligand in the artificial imine reductase, is practical for envisaging how the enantiodiscrimination by different Streptavidin (Sav) mutants could influence the chiral environment of the metal cofactor. Only in the case of (R)-CAMPY IV did the chirality at the metal centre and the second coordination sphere environment, which was dictated by the host protein, operate in a synergistic way, producing better enantioselectivity at a S112M Sav catalyst/catalyst ratio of 1.0 : 2.5. Under these optimized conditions, the artificial imine reductase afforded a good enantiomeric excess (83%) in the asymmetric transfer hydrogenation of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline.

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

32

ee:

83

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

99

ee:

13

PDB:

---

Notes:

---

A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology

Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

14

ee:

11

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

100

ee:

79

PDB:

---

Notes:

---

An Artificial Imine Reductase Based on the Ribonuclease S Scaffold

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Ribonuclease S

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

4

ee:

18

PDB:

---

Notes:

---

An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades

Metal:

Ir

Ligand type:

Cp*; Phenanthroline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

>999

ee:

>99

PDB:

---

Notes:

---

Artificial Metalloenzymes Based on Biotin-Avidin Technology for the Enantioselective Reduction of Ketones by Transfer Hydrogenation

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

92

ee:

94

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

30

ee:

63

PDB:

---

Notes:

---

Artificial Metalloenzymes for the Diastereoselective Reduction of NAD+ to NAD2H

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Artificial Transfer Hydrogenases Based on the Biotin-(Strept)avidin Technology: Fine Tuning the Selectivity by Saturation Mutagenesis of the Host Protein

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

96

ee:

80

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

73

ee:

60

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

95

ee:

70

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

79

ee:

97

PDB:

---

Notes:

---

Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4000

ee:

96

PDB:

3PK2

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

94

ee:

52

PDB:

3PK2

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

97

ee:

22

PDB:

3PK2

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

76

ee:

12

PDB:

3PK2

Notes:

---

Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

970

ee:

13

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

158

ee:

82

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Olefin metathesis

Max TON:

105

ee:

---

PDB:

---

Notes:

RCM, biotinylated Hoveyda-Grubbs second generation catalyst

Metal:

---

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Anion-π catalysis

Max TON:

6

ee:

41

PDB:

---

Notes:

No metal

Computational Insights on an Artificial Imine Reductase Based on the Biotin-Streptavidin Technology

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

---

ee:

96

PDB:

3PK2

Notes:

Prediction of the enantioselectivity by computational methods.

Cross-Regulation of an Artificial Metalloenzyme

Metal:

Ir

Ligand type:

Cp*; Phenanthroline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

96

ee:

---

PDB:

---

Notes:

Cross-regulated reduction of the antibiotic enrofloxacin by an ArM.

Directed Evolution of an Artificial Imine Reductase

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

380

ee:

95

PDB:

6ESS

Notes:

Salsolidine formation; Sav mutant S112A-N118P-K121A-S122M: (R)-selective

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

220

ee:

85

PDB:

6ESS

Notes:

Salsolidine formation; Sav mutant S112R-N118P-K121A-S122M-L124Y: (S)-selective

Efficient in Situ Regeneration of NADH Mimics by an Artificial Metalloenzyme

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

>1980

ee:

---

PDB:

---

Notes:

ArM works in combination with the ene reductase (ER) of the Old Yellow Enzyme family fromThermus scotuductus (TsOYE).

Evaluation of Chemical Diversity of Biotinylated Chiral 1,3-Diamines as a Catalytic Moiety in Artificial Imine Reductase

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

>99

ee:

83

PDB:

3PK2

Notes:

---

Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

188

ee:

43

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino carboxylic acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4

ee:

21

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Pyrazine amide

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

26

ee:

16

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

12

ee:

13

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Oxazoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

102

ee:

14

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

94

ee:

67

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino amide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

10

ee:

7

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino carboxylic acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

8

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Pyrazine amide

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4

ee:

6

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Oxazoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

8

ee:

0

PDB:

---

Notes:

---

Ferritin Encapsulation of Artificial Metalloenzymes: Engineering a Tertiary Coordination Sphere for an Artificial Transfer Hydrogenase

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

3874

ee:

75

PDB:

---

Notes:

---

Fluorescence-Based Assay for the Optimization of the Activity of Artificial Transfer Hydrogenase within a Biocompatible Compartment

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

1000

ee:

76

PDB:

6GMI

Notes:

---

Genetic Optimization of the Catalytic Efficiency of Artificial Imine Reductases Based on Biotin−Streptavidin Technology

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

---

ee:

60

PDB:

---

Notes:

---

High-Level Secretion of Recombinant Full-Length Streptavidin in Pichia Pastoris and its Application to Enantioselective Catalysis

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

152

ee:

61

PDB:

---

Notes:

Sav expression in E. coli

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

158

ee:

64

PDB:

---

Notes:

Sav expression in P. pastoris

Human Carbonic Anhydrase II as Host Protein for the Creation of Artificial Metalloenzymes: The Asymmetric Transfer Hydrogenation of Imines

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

47

ee:

70

PDB:

---

Notes:

---

Immobilization of an Artificial Imine Reductase Within Silica Nanoparticles Improves its Performance

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

4554

ee:

89

PDB:

---

Notes:

Reaction in nanoparticles

Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design

Metal:

Ir

Ligand type:

Cp*; Pyridine sulfonamide

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

100

ee:

96

PDB:

---

Notes:

---

Improving the Enantioselectivity of Artificial Transfer Hydrogenases Based on the Biotin–Streptavidin Technology by Combinations of Point Mutations

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

98

ee:

98

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

24

ee:

84

PDB:

Notes:

---

Library Design and Screening Protocol for Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

183

ee:

71

PDB:

---

Notes:

Purified streptavidin (mutant K121A)

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

42

ee:

59

PDB:

---

Notes:

Cell free extract (mutant Sav K121A) treated with diamide

Metal:

Ru

Ligand type:

N-heterocyclic carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

66

ee:

---

PDB:

---

Notes:

Purified streptavidin (mutant K121A)

Metal:

Ru

Ligand type:

N-heterocyclic carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

18

ee:

---

PDB:

---

Notes:

Cell free extract (mutant Sav K121A immobilised on iminobiotin-sepharose beads)

Neutralizing the Detrimental Effect of Glutathione on Precious Metal Catalysts

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

98

ee:

85

PDB:

---

Notes:

Reaction in cell-free extract with diamide

Piano-Stool d(6)-Rhodium(III) Complexes of Chelating Pyridine-Based Ligands and their Papain Bioconjugates for the Catalysis of Transfer Hydrogenation of Aryl Ketones in Aqueous Medium

Metal:

Rh

Ligand type:

Cp*; Phenanthroline

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Max TON:

30

ee:

9

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Di(2-pyridyl)

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Max TON:

20

ee:

5

PDB:

---

Notes:

---

Porous Protein Crystals as Catalytic Vessels for Organometallic Complexes

Metal:

Ru

Ligand type:

Benzene

Host protein:

Lysozyme (crystal)

Anchoring strategy:

Dative

Optimization:

---

Max TON:

---

ee:

---

PDB:

3W6A

Notes:

Tetragonal HEWL crystals

Metal:

Ru

Ligand type:

Benzene

Host protein:

Lysozyme (crystal)

Anchoring strategy:

Dative

Optimization:

---

Max TON:

---

ee:

---

PDB:

3W6A

Notes:

Orthorhombic HEWL crystals

Proteins as Macromolecular Ligands for Metal-Catalysed Asymmetric Transfer Hydrogenation of Ketones in Aqueous Medium

Metal:

Ru

Ligand type:

Benzene derivatives

Anchoring strategy:

Undefined

Optimization:

---

Max TON:

43

ee:

82

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*

Anchoring strategy:

Undefined

Optimization:

---

Max TON:

16

ee:

14

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*

Anchoring strategy:

Undefined

Optimization:

---

Max TON:

20

ee:

16

PDB:

---

Notes:

---

Redox-Switchable Siderophore Anchor Enables Reversible Artificial Metalloenzyme Assembly

Metal:

Ir

Ligand type:

Cp*; Pyridine sulfonamide

Host protein:

CeuE

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

---

ee:

35.4

PDB:

5OD5

Notes:

Redox switchable iron(III)-azotochelin anchor