2 publications
-
Copper–Phthalocyanine Conjugates of Serum Albumins as Enantioselective Catalysts in Diels–Alder Reactions
-
Angew. Chem. Int. Ed. 2006, 45, 2416-2419, 10.1002/anie.200504561
Chirality from blood: Serum albumins form strong complexes with CuII–phthalocyanines, leading to protein conjugates. These hybrid catalysts promote enantioselective Diels–Alder reactions, such as that of azachalcones 1 with cyclopentadiene (2) to give products 3 with 85–98 % ee.
Metal: CuLigand type: PhthalocyanineHost protein: Bovine serum albumin (BSA)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: Chirality from blood: Serum albumins form strong complexes with CuII–phthalocyanines, leading to protein conjugates. These hybrid catalysts promote enantioselective Diels–Alder reactions, such as that of azachalcones 1 with cyclopentadiene (2) to give products 3 with 85–98 % ee.
-
DNA‐Based Asymmetric Inverse Electron‐Demand Hetero‐Diels–Alder
-
Chem. Eur. J. 2020, 26, 3519-3523, 10.1002/chem.202000516
While artificial cyclases hold great promise in chemical synthesis, this work presents the first example of a DNA-catalyzed inverse electron-demand hetero-Diels–Alder (IEDHDA) between dihydrofuran and various α,β-unsaturated acyl imidazoles. The resulting fused bicyclic O,O-acetals containing three contiguous stereogenic centers are obtained in high yields (up to 99 %) and excellent diastereo- (up to >99:1 dr) and enantioselectivities (up to 95 % ee) using a low catalyst loading. Most importantly, these results show that the concept of DNA-based asymmetric catalysis can be expanded to new synthetic transformations offering an efficient, sustainable, and highly selective tool for the construction of chiral building blocks.
Metal: CuLigand type: Cu(dmbipy)(NO3)2Host protein: DNAAnchoring strategy: SupramolecularOptimization: ChemicalNotes: ---