2 publications

2 publications

A Chaperonin as Protein Nanoreactor for Atom-Transfer Radical Polymerization

Bruns, N.

Angew. Chem. Int. Ed. 2014, 53, 1443-1447, 10.1002/anie.201306798

The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom‐transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of N‐isopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein–catalyst conjugate only yielded polymers with PDIs above 1.84.


Metal: Cu
Host protein: Thermosome (THS)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Polymerization
Max TON: ---
ee: ---
PDB: ---
Notes: Non-ROMP

Catalysis Without a Headache: Modification of Ibuprofen for the Design of Artificial Metalloenzyme for Sulfide Oxidation

Ménage, S.

J. Mol. Catal. A: Chem. 2016, 416, 20-28, 10.1016/j.molcata.2016.02.015

A new artificial oxidase has been developed for selective transformation of thioanisole. The catalytic activity of an iron inorganic complex, FeLibu, embedded in a transport protein NikA has been investigated in aqueous media. High efficiency (up to 1367 t), frequency 459 TON min−1 and selectivity (up to 69%) make this easy to use catalytic system an asset for a sustainable chemistry.


Metal: Fe
Ligand type: BPHMEN
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 1367
ee: ---
PDB: ---
Notes: ---