1 publication

1 publication

Synthesis of a Heterogeneous Artificial Metallolipase with Chimeric Catalytic Activity

Filice, M.

Chem. Commun. 2015, 51, 9324-9327, 10.1039/C5CC02450A

A solid-phase strategy using lipase as a biomolecular scaffold to produce a large amount of Cu2+-metalloenzyme is proposed here. The application of this protocol on different 3D cavities of the enzyme allows creating a heterogeneous artificial metallolipase showing chimeric catalytic activity. The artificial catalyst was assessed in Diels–Alder cycloaddition reactions and cascade reactions showing excellent catalytic properties.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 411
ee: 92
PDB: ---
Notes: ArM is immobilized on Sepabeads. Endo/exo = 93.5%

Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Reduction
Max TON: ---
ee: ---
PDB: ---
Notes: Cascade reaction: Ester hydrolysis (natural function of the host protein) followed by reduction (function of the designed ArM).