5 publications
-
De Novo Enzymes: From Computational Design to mRNA Display
Review -
Trends Biotechnol. 2010, 28, 340-345, 10.1016/j.tibtech.2010.04.003
Enzymes offer cheap, environmentally responsible and highly efficient alternatives to chemical catalysts. The past two decades have seen a significant rise in the use of enzymes in industrial settings. Although many natural enzymes have been modified through protein engineering to better suit practical applications, these approaches are often insufficient. A key goal of enzyme engineers is to build enzymes de novo – or, ‘from scratch’. To date, several technologies have been developed to achieve this goal: namely, computational design, catalytic antibodies and mRNA display. These methods rely on different principles, trading off rational protein design against an entirely combinatorial approach of directed evolution of vast protein libraries. The aim of this article is to review and compare these methods and their potential for generating truly de novo biocatalysts.
Notes: ---
-
Precise Design of Artificial Cofactors for Enhancing Peroxidase Activity of Myoglobin: Myoglobin Mutant H64D Reconstituted with a “Single-Winged Cofactor” is Equivalent to Native Horseradish Peroxidase in Oxidation Activity
-
Chem. - Asian J. 2011, 6, 2491-2499, 10.1002/asia.201100107
H64D myoglobin mutant was reconstituted with two different types of synthetic hemes that have aromatic rings and a carboxylate‐based cluster attached to the terminus of one or both of the heme‐propionate moieties, thereby forming a “single‐winged cofactor” and “double‐winged cofactor,” respectively. The reconstituted mutant myoglobins have smaller Km values with respect to 2‐methoxyphenol oxidation activity relative to the parent mutant with native heme. This suggests that the attached moiety functions as a substrate‐binding domain. However, the kcat value of the mutant myoglobin with the double‐winged cofactor is much lower than that of the mutant with the native heme. In contrast, the mutant reconstituted with the single‐winged cofactor has a larger kcat value, thereby resulting in overall catalytic activity that is essentially equivalent to that of the native horseradish peroxidase. Enhanced peroxygenase activity was also observed for the mutant myoglobin with the single‐winged cofactor, thus indicating that introduction of an artificial substrate‐binding domain at only one of the heme propionates in the H64D mutant is the optimal engineering strategy for improving the peroxidase activity of myoglobin.
Metal: FeLigand type: Single winged protoporphyrin IXHost protein: Myoglobin (Mb)Anchoring strategy: ReconstitutionOptimization: Chemical & geneticNotes: ---
-
Recent Developments on Creation of Artificial Metalloenzymes
Review -
Tetrahedron Lett. 2019, 60, 151226, 10.1016/j.tetlet.2019.151226
Organic synthesis using biocatalysts has been developed over many years and is still a prominent area of research. In this context, various hybrid biocatalysts composed of a synthetic metal complex catalyst and a protein scaffold (i.e. artificial metalloenzymes) have been constructed. One of the most recent research areas in biocatalysts-mediated synthesis is CC bond/cleavage, the most important type of reaction in organic chemistry. Some of the artificial enzymes were applied to in-cell reactions as well as in vitro systems. The effects of the structural fluctuation in biomacromolecules on their functions have also been realized. This review article includes recent research examples of artificial metalloenzymes used to CC bond formation/cleavage. As a perspective, we also focus on how we apply protein dynamics factor for the creation of new generation artificial metalloenzymes.
Notes: ---
-
Selection and Evolution of Enzymes from a Partially Randomized Non-Catalytic Scaffold
-
Nature 2007, 448, 828-831, 10.1038/nature06032
Enzymes are exceptional catalysts that facilitate a wide variety of reactions under mild conditions, achieving high rate-enhancements with excellent chemo-, regio- and stereoselectivities. There is considerable interest in developing new enzymes for the synthesis of chemicals and pharmaceuticals1,2,3 and as tools for molecular biology. Methods have been developed for modifying and improving existing enzymes through screening, selection and directed evolution4,5. However, the design and evolution of truly novel enzymes has relied on extensive knowledge of the mechanism of the reaction6,7,8,9,10. Here we show that genuinely new enzymatic activities can be created de novo without the need for prior mechanistic information by selection from a naive protein library of very high diversity, with product formation as the sole selection criterion. We used messenger RNA display, in which proteins are covalently linked to their encoding mRNA11, to select for functional proteins from an in vitro translated protein library of >1012independent sequences without the constraints imposed by any in vivo step. This technique has been used to evolve new peptides and proteins that can bind a specific ligand12,13,14,15,16,17,18, from both random-sequence libraries12,14,15,16 and libraries based on a known protein fold17,18. We now describe the isolation of novel RNA ligases from a library that is based on a zinc finger scaffold18,19, followed by in vitro directed evolution to further optimize these enzymes. The resulting ligases exhibit multiple turnover with rate enhancements of more than two-million-fold.
Metal: ZnLigand type: Amino acidHost protein: Human retinoid-X-receptor (hRXRa)Anchoring strategy: DativeOptimization: GeneticNotes: ---
-
Structure and Dynamics of a Primordial Catalytic fold Generated by In Vitro Evolution
-
Nat. Chem. Biol. 2013, 9, 81-83, 10.1038/nchembio.1138
Engineering functional protein scaffolds capable of carrying out chemical catalysis is a major challenge in enzyme design. Starting from a noncatalytic protein scaffold, we recently generated a new RNA ligase by in vitro directed evolution. This artificial enzyme lost its original fold and adopted an entirely new structure with substantially enhanced conformational dynamics, demonstrating that a primordial fold with suitable flexibility is sufficient to carry out enzymatic function.
Metal: ZnLigand type: Amino acidHost protein: Human retinoid-X-receptor (hRXRa)Anchoring strategy: DativeOptimization: GeneticNotes: ---