2 publications

2 publications

Biomacromolecules as Ligands for Artificial Metalloenzymes

Review

Ward, T.R.

Comprehensive Inorganic Chemistry II 2013, 737-761, 10.1016/B978-0-08-097774-4.00626-4

First coordination sphere interactions usually are involved in metal-catalyzed enantioselective transformations: a chiral ligand directly linked to the metal dictates the enantiomeric outcome of a given reaction. A novel concept has emerged in the past 30 years: achiral metal complexes are inserted into proteins or DNA and the resulting artificial metalloenzymes catalyze various enantioselective transformations. In these hybrid catalysts, enantioselection is achieved with the help of the second coordination sphere, that is, a subtle combination of secondary interactions between the biomolecular scaffold, the catalyst, and the substrate. This chapter discusses the design of artificial metalloenzymes and their use in homogeneous catalysis.


Notes: Book chapter

Metalloprotein Design

Review

Marshall, N.M.

Comprehensive Inorganic Chemistry II 2013, 565-593, 10.1016/B978-0-08-097774-4.00325-9

Metalloproteins catalyze numerous biological reactions ranging from photosynthesis, respiration, nitrogen fixation to signal transduction and complex chemical reactions. It is thus not surprising that metalloproteins account for almost one-half of the total number of proteins in nature. A considerable effort has been directed toward understanding the structure–function relationships using native proteins. However, it is an ultimate challenge to design metalloproteins using only the minimal features required to reproduce their functionalities as well as confer them with novel and unprecedented functionalities learned from the design process. In this chapter, we review some recent successes in the field of metalloprotein design using either de novo designed or native protein scaffolds. Furthermore, metalloprotein design employing unnatural amino acids or non-native cofactor are summarized. Finally, methodologies employing rational design, combinatorial selection, or both methods are also discussed.


Notes: Book chapter