3 publications

3 publications

Hemoabzymes: Towards New Biocatalysts for Selective Oxidations

Mahy, J.-P.

J. Immunol. Methods 2002, 269, 39-57, 10.1016/S0022-1759(02)00223-5

Catalytic antibodies with a metalloporphyrin cofactor or «hemoabzymes», used as models for hemoproteins like peroxidases and cytochrome P450, represent a promising route to catalysts tailored for selective oxidation reactions. A brief overview of the literature shows that until now, the first strategy for obtaining such artificial hemoproteins has been to produce antiporphyrin antibodies, raised against various free-base, N-substituted Sn-, Pd- or Fe-porphyrins. Five of them exhibited, in the presence of the corresponding Fe-porphyrin cofactor, a significant peroxidase activity, with kcat/Km values of 3.7×103–2.9×105 M−1 min−1. This value remained, however, low when compared to that of peroxidases. This strategy has also led to a few models of cytochrome P450. The best of them, raised against a water-soluble tin(IV) porphyrin containing an axial α-naphtoxy ligand, was reported to catalyze the stereoselective oxidation of aromatic sulfides by iodosyl benzene using a Ru(II)-porphyrin cofactor. The relatively low efficiency of the porphyrin–antibody complexes is probably due, at least in part, to the fact that no proximal ligand of Fe has been induced in those antibodies. We then proposed to use, as a hapten, microperoxidase 8 (MP8), a heme octapeptide in which the imidazole side chain of histidine 18 acts as a proximal ligand of the iron atom. This led to the production of seven antibodies recognizing MP8, the best of them, 3A3, binding it with an apparent binding constant of 10−7 M. The corresponding 3A3–MP8 complex was found to have a good peroxidase activity characterized by a kcat/Km value of 2×106 M−1 min−1, which constitutes the best one ever reported for an antibody–porphyrin complex. Active site topology studies suggest that the binding of MP8 occurs through interactions of its carboxylate substituents with amino acids of the antibody and that the protein brings a partial steric hindrance of the distal face of the heme of MP8. Consequently, the use of the 3A3–MP8 complexes for the selective oxidation of substrates, such as sulfides, alkanes and alkenes will be undertaken in the future.


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 3A3
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: kcat/KM = 33000 M-1 * s-1

New Activities of a Catalytic Antibody with a Peroxidase Activity: Formation of Fe(II)–RNO Complexes and Stereoselective Oxidation of Sulfides

Mahy, J.-P.

Eur. J. Biochem. 2004, 271, 1277-1283, 10.1111/j.1432-1033.2004.04032.x

In order to estimate the size of the cavity remaining around the heme of the 3A3–microperoxidase 8 (MP8) hemoabzyme, the formation of 3A3–MP8–Fe(II)‐nitrosoalkane complexes upon oxidation of N‐monosubstituted hydroxylamines was examined. This constituted a new reaction for hemoabzymes and is the first example of fully characterized Fe(II)–metabolite complexes of antibody–porphyrin. Also, via a comparison of the reactions with N‐substituted hydroxylamines of various size and hydrophobicity, antibody 3A3 was confirmed to bring about a partial steric hindrance on the distal face of MP8. Subsequently, the influence of the antibody on the stereoselectivity of the S‐oxidation of sulfides was examined. Our results showed that MP8 alone and the antibody–MP8 complex catalyze the oxidation of thioanisole by H2O2 and tert‐butyl hydroperoxide, following a peroxidase‐like two‐step oxygen‐transfer mechanism involving a radical–cation intermediate. The best system, associating H2O2 as oxidant and 3A3–MP8 as a catalyst, in the presence of 5% tert‐butyl alcohol, led to the stereoselective S‐oxidation of thioanisole with a 45% enantiomeric excess in favour of the R isomer. This constitutes the highest enantiomeric excess reported to date for the oxidation of sulfides catalyzed by hemoabzymes.


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 3A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 82
ee: 45
PDB: ---
Notes: ---

Regioselective Nitration of Phenol Induced by Catalytic Antibodies

Mahy, J.-P.

J. Protein Chem. 2002, 21, 473-477, 10.1023/A:1021351120772

Catalytic antibodies with a metalloporphyrin cofactor represent a new generation of biocatalysts tailored for selective oxidations. Thus monoclonal antibodies, 3A3, were raised against microperoxidase 8 (MP8), and the corresponding 3A3-MP8 complexes were shown previously to have a high peroxidase activity. This paper shows that those complexes also catalyzed efficiently the nitration of phenol into 2- and 4-nitrophenol by NO2 − in the presence of H2O2. pH dependence studies suggested that no amino acid from the antibody protein participated in the heterolytic cleavage of the O-O bond of H2O2. The inhibition of the reaction by cyanide and radical scavengers suggested a MP8-mediated peroxidase-like mechanism, involving the reduction of high-valent iron-oxo species by NO2 − and phenol producing, respectively, NO2 · and phenoxy radicals, which then reacted to give nitrophenols. Finally, the antibody protein appears to have two major roles: (i) it protects MP8 toward oxidative degradations and (ii) it induces a regioselectivity of the reaction toward the formation of 2-nitrophenol.


Metal: Fe
Ligand type: Amino acid; Porphyrin
Host protein: Antibody 3A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: C-H oxidation
Max TON: 36
ee: ---
PDB: ---
Notes: Nitration of phenol