2 publications

2 publications

A Protein-Rhodium Complex as an Efficient Catalyst for Two-Phase Olefin Hydroformylation

Marchetti, M.

Tetrahedron Lett. 2000, 41, 3717-3720, 10.1016/S0040-4039(00)00473-1

A highly efficient and chemoselective biphasic hydroformylation of olefins was accomplished using water soluble complexes formed by the interaction between Rh(CO)2(acac) and human serum albumin (HSA), a readily available water soluble protein. A new type of shape-selectivity was observed in the hydroformylation of sterically hindered olefins.


Metal: Rh
Ligand type: Acac; CO2
Anchoring strategy: Undefined
Optimization: ---
Reaction: Hydroformylation
Max TON: ~600
ee: ---
PDB: ---
Notes: ---

Aqueous Biphasic Hydroformylation Catalysed by Protein-Rhodium Complexes

Marchetti, M.

Adv. Synth. Catal. 2002, 344, 556, 10.1002/1615-4169(200207)344:5<556::AID-ADSC556>3.0.CO;2-E

The water‐soluble complex derived from Rh(CO)2(acac) and human serum albumin (HSA) proved to be efficient in the hydroformylation of several olefin substrates. The chemoselectivity and regioselectivity were generally higher than those obtained by using the classic catalytic systems like TPPTS‐Rh(I) (TPPTS=triphenylphosphine‐3,3′,3″‐trisulfonic acid trisodium salt). Styrene and 1‐octene, for instance, were converted in almost quantitative yields into the corresponding oxo‐aldehydes at 60 °C and 70 atm (CO/H2=1) even at very low Rh(CO)2(acac)/HSA catalyst concentrations. The possibility of easily recovering the Rh(I) compound makes the system environmentally friendly. The circular dichroism technique was useful for demonstrating the Rh(I) binding to the protein and to give information on the stability in solution of the catalytic system. Some other proteins have been used to replace HSA as complexing agent for Rh(I). The results were less impressive than those obtained using HSA and their complexes with Rh(I) were much less stable.


Metal: Rh
Ligand type: Undefined
Anchoring strategy: Undefined
Optimization: ---
Reaction: Hydroformylation
Max TON: 741000
ee: ---
PDB: ---
Notes: ---