Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

24 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. clearMahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

Active Site Topology of Artificial Peroxidase-like Hemoproteins Based on Antibodies Constructed from a Specifically Designed Ortho-carboxy-substituted Tetraarylporphyrin

The topology of the binding site has been studied for two monoclonal antibodies 13G10 and 14H7, elicited against iron(III)‐α,α,α,β‐meso‐tetrakis(ortho‐carboxyphenyl)porphyrin {α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin]}, and which exhibit in the presence of this α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] cofactor a peroxidase activity. A comparison of the dissociation constants of the complexes of 13G10 and 14H7 with various tetra‐aryl‐substituted porphyrin has shown that : (a) the central iron(III) atom of α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] is not recognized by either of the two antibodies; and (b) the ortho‐carboxylate substituents of the meso‐phenyl rings of α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] are essential for the recognition of the porphyrin by 13G10 and 14H7. Measurement of the dissociation constants for the complexes of 13G10 and 14H7 with the four atropoisomers of (o‐COOHPh)4‐porphyrinH2 as well as mono‐ and di‐ortho‐carboxyphenyl‐substituted porphyrins suggests that the three carboxylates in the α, α, β position are recognized by both 13G10 and 14H7 with the two in the α, β positions more strongly bound to the antibody protein. Accordingly, the topology of the active site of 13G10 and 14H7 has roughly two‐thirds of the α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] cofactor inserted into the binding site of the antibodies, with one of the aryl ring remaining outside. Three of the carboxylates are bound to the protein but no amino acid residue acts as an axial ligand to the iron atom. Chemical modification of lysine, histidine, tryptophan and arginine residues has shown that only modification of arginine residues causes a decrease in both the binding of α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] and the peroxidase activity of both antibodies. Consequently, at least one of the carboxylates of the hapten is bound to an arginine residue and no amino acids such as lysine, histidine or tryptophan participate in the catalysis of the heterolytic cleavage of the O‐O bond of H2O2. In addition, the amino acid sequence of both antibodies not only reveals the presence of arginine residues, which could be those involved in the binding of the carboxylates of the hapten, but also the presence of several amino acids in the complementary determining regions which could bind other carboxylates through a network of H bonds.

Metal:

Fe

Ligand type:

---

Host protein:

Antibody 13G10 / 14H7

Anchoring strategy:

Antibody

Optimization:

Chemical & genetic

Reaction:

Peroxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

---

An Artificial Enzyme Made by Covalent Grafting of an FeII Complex into β-Lactoglobulin: Molecular Chemistry, Oxidation Catalysis, and Reaction-Intermediate Monitoring in a Protein

An artificial metalloenzyme based on the covalent grafting of a nonheme FeII polyazadentate complex into bovine β‐lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the FeII catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin‐state conversion of the initial high spin (S=2) FeII complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center’s first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2O2 reveals the generation of a high spin (S=5/2) FeIII(η2‐O2) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate.

Metal:

Fe

Ligand type:

Poly-pyridine

Host protein:

ß-lactoglobulin

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

5.6

ee:

20

PDB:

---

Notes:

---

Artificial Metalloenzymes with the Neocarzinostatin Scaffold: Toward a Biocatalyst for the Diels–Alder Reaction

Metal:

Cu

Ligand type:

Phenanthroline

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

33

ee:

---

PDB:

---

Notes:

Up to endo/exo ratio 62:38

Artificial Peroxidase-Like Hemoproteins Based on Antibodies Constructed from a Specifically Designed Ortho-Carboxy Substituted Tetraarylporphyrin Hapten and Exhibiting a High Affinity for Iron-Porphyrins

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 13G10

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

kcat/KM = 105 M-1 * s-1

Coordination Chemistry of Iron(III)-Porphyrin-Antibody Complexes Influence on the Peroxidase Activity of the Axial Coordination of an Imidazole on the Iron Atom

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 13G10

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

kcat/KM = 15200 M-1 * s-1

Coordination Chemistry Studies and Peroxidase Activity of a New Artificial Metalloenzyme Built by the “Trojan Horse” Strategy

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 7A3

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

k1 = 574 M-1 * min-1

From "Hemoabzymes" to "Hemozymes": Towards new Biocatalysts for Selective Oxidations

Review

Notes:

---

Hemoabzymes - Different Strategies for Obtaining Artificial Hemoproteins based on Antibodies

Review

Notes:

---

Hemoabzymes: Towards New Biocatalysts for Selective Oxidations

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 3A3

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

kcat/KM = 33000 M-1 * s-1

Hemozymes Peroxidase Activity Of Artificial Hemoproteins Constructed From the Streptomyces Lividans Xylanase A and Iron(III)-Carboxy-Substituted Porphyrins

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Xylanase A (XynA)

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

kcat/KM = 1083 M-1 * s-1

Incorporation of Manganese Complexes into Xylanase: New Artificial Metalloenzymes for Enantioselective Epoxidation

Metal:

Mn

Ligand type:

Porphyrin

Host protein:

Xylanase A (XynA)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Epoxidation

Max TON:

21

ee:

80

PDB:

---

Notes:

---

Neocarzinostatin-Based Hybrid Biocatalysts for Oxidation Reactions

Metal:

Fe

Ligand type:

Porphyrin

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

6

ee:

13

PDB:

---

Notes:

---

Neocarzinostatin-Based Hybrid Biocatalysts with a RNase like Activity

Metal:

Zn

Ligand type:

Poly-pyridine

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

kcat/KM = 13.6 M-1 * s-1

New Activities of a Catalytic Antibody with a Peroxidase Activity: Formation of Fe(II)–RNO Complexes and Stereoselective Oxidation of Sulfides

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 3A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

82

ee:

45

PDB:

---

Notes:

---

New Biocatalysts Mimicking Oxidative Hemoproteins: Hemoabzymes

Review

Notes:

---

Oxidation Catalysis via Visible-Light Water Activation of a [Ru(bpy)3]2+ Chromophore BSA–Metallocorrole Couple

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

21

ee:

16

PDB:

---

Notes:

Water as oxygen source

Oxidation of Organic Molecules in Homogeneous Aqueous Solution Catalyzed by Hybrid Biocatalysts (Based on the Trojan Horse Strategy)

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 7A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

9

ee:

10

PDB:

---

Notes:

---

Metal:

Mn

Ligand type:

Porphyrin

Host protein:

Antibody 7A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Epoxidation

Max TON:

105

ee:

---

PDB:

---

Notes:

Imidazole as co-catalyst

Receptor-Based Artificial Metalloenzymes on Living Human Cells

Metal:

Cu

Ligand type:

Phenanthroline

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

24

ee:

35

PDB:

---

Notes:

---

Regioselective Nitration of Phenol Induced by Catalytic Antibodies

Metal:

Fe

Ligand type:

Amino acid; Porphyrin

Host protein:

Antibody 3A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

C-H oxidation

Max TON:

36

ee:

---

PDB:

---

Notes:

Nitration of phenol

Selective Oxidation of Aromatic Sulfide Catalyzed by an Artificial Metalloenzyme: New Activity of Hemozymes

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Xylanase A (XynA)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

145

ee:

40

PDB:

---

Notes:

---

Studies of the Reactivity of Artificial Peroxidase-Like Hemoproteins Based on Antibodies Elicited Against a Specifically Designed ortho-Carboxy Substituted Tetraarylporphyrin

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 13G10

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

TOF = 4.7 min-1

Synthesis of a New Estradiol–Iron Metalloporphyrin Conjugate Used to Build up a New Hybrid Biocatalyst for Selective Oxidations by the ‘Trojan Horse’ Strategy

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 7A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

12

ee:

8

PDB:

---

Notes:

---

Various Strategies for Obtaining Artificial Hemoproteins: From "Hemoabzymes" to "Hemozymes"

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Xylanase A (XynA)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

---

ee:

36

PDB:

---

Notes:

---

Various Strategies for Obtaining Oxidative Artificial Hemoproteins with a Catalytic Oxidative Activity: From "Hemoabzymes" to "Hemozymes"?

Review

Notes:

---