Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

24 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A Clamp-Like Biohybrid Catalyst for DNA Oxidation

In processive catalysis, a catalyst binds to a substrate and remains bound as it performs several consecutive reactions, as exemplified by DNA polymerases. Processivity is essential in nature and is often mediated by a clamp-like structure that physically tethers the catalyst to its (polymeric) template. In the case of the bacteriophage T4 replisome, a dedicated clamp protein acts as a processivity mediator by encircling DNA and subsequently recruiting its polymerase. Here we use this DNA-binding protein to construct a biohybrid catalyst. Conjugation of the clamp protein to a chemical catalyst with sequence-specific oxidation behaviour formed a catalytic clamp that can be loaded onto a DNA plasmid. The catalytic activity of the biohybrid catalyst was visualized using a procedure based on an atomic force microscopy method that detects and spatially locates oxidized sites in DNA. Varying the experimental conditions enabled switching between processive and distributive catalysis and influencing the sliding direction of this rotaxane-like catalyst.

Metal:

Mn

Ligand type:

Porphyrin

Host protein:

gp45

Anchoring strategy:

Covalent

Optimization:

---

Max TON:

---

ee:

---

PDB:

1CZD

Notes:

---

Albumin-Conjugated Corrole Metal Complexes: Extremely Simple Yet Very Efficient Biomimetic Oxidation Systems

An extremely simple biomimetic oxidation system, consisting of mixing metal complexes of amphiphilic corroles with serum albumins, utilizes hydrogen peroxide for asymmetric sulfoxidation in up to 74% ee. The albumin-conjugated manganese corroles also display catalase-like activity, and mechanistic evidence points toward oxidant-coordinated manganese(III) as the prime reaction intermediate.

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

8

ee:

74

PDB:

---

Notes:

---

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

42

ee:

52

PDB:

---

Notes:

---

A Site-Selective Dual Anchoring Strategy for Artificial Metalloprotein Design

Introducing nonnative metal ions or metal-containing prosthetic groups into a protein can dramatically expand the repertoire of its functionalities and thus its range of applications. Particularly challenging is the control of substrate-binding and thus reaction selectivity such as enantioselectivity. To meet this challenge, both non-covalent and single-point attachments of metal complexes have been demonstrated previously. Since the protein template did not evolve to bind artificial metal complexes tightly in a single conformation, efforts to restrict conformational freedom by modifying the metal complexes and/or the protein are required to achieve high enantioselectivity using the above two strategies. Here we report a novel site-selective dual anchoring (two-point covalent attachment) strategy to introduce an achiral manganese salen complex (Mn(salen)), into apo sperm whale myoglobin (Mb) with bioconjugation yield close to 100%. The enantioselective excess increases from 0.3% for non-covalent, to 12.3% for single point, and to 51.3% for dual anchoring attachments. The dual anchoring method has the advantage of restricting the conformational freedom of the metal complex in the protein and can be generally applied to protein incorporation of other metal complexes with minimal structural modification to either the metal complex or the protein.

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Covalent

Optimization:

Genetic

Reaction:

Sulfoxidation

Max TON:

3.9

ee:

51

PDB:

1MBO

Notes:

Sperm whale myoglobin

Coordinated Design of Cofactor and Active Site Structures in Development of New Protein Catalysts

Metal:

Mn

Ligand type:

Salophen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

1V9Q

Notes:

---

Metal:

Cr

Ligand type:

Salophen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

1V9Q

Notes:

---

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Metal:

Cr

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Covalent Versus Non-covalent (Biocatalytic) Approaches for Enantioselective Sulfoxidation Catalyzed by Corrole Metal Complexes

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

45

ee:

70

PDB:

---

Notes:

---

C(sp3)–H Bond Hydroxylation Catalyzed by Myoglobin Reconstituted with Manganese Porphycene

Metal:

Mn

Ligand type:

Porphycene

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

---

Reaction:

Hydroxylation

Max TON:

---

ee:

---

PDB:

2WI8

Notes:

---

Incorporation of Biotinylated Manganese-Salen Complexes into Streptavidin: New Artificial Metalloenzymes for Enantioselective Sulfoxidation

Metal:

Mn

Ligand type:

Oxide; Salen

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

28

ee:

13

PDB:

---

Notes:

---

Incorporation of Manganese Complexes into Xylanase: New Artificial Metalloenzymes for Enantioselective Epoxidation

Metal:

Mn

Ligand type:

Porphyrin

Host protein:

Xylanase A (XynA)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Epoxidation

Max TON:

21

ee:

80

PDB:

---

Notes:

---

Intramolecular C(sp3)-H Amination of Arylsulfonyl Azides with Engineered and Artificial Myoglobin-Based Catalysts

Metal:

Mn

Ligand type:

Amino acid; Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

142

ee:

---

PDB:

---

Notes:

---

Manganese-Substituted Carbonic Anhydrase as a New Peroxidase

Metal:

Mn

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

Epoxidation

Max TON:

22

ee:

67

PDB:

---

Notes:

---

Metal:

Mn

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

Epoxidation

Max TON:

9.5

ee:

55

PDB:

Notes:

PDB ID 4CAC = Structure of Zn containing hCAII

Manganese Terpyridine Artificial Metalloenzymes for Benzylic Oxygenation and Olefin Epoxidation

Metal:

Mn

Ligand type:

Poly-pyridine

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

Chemical

Max TON:

19.2

ee:

---

PDB:

3EMM

Notes:

---

Metal:

Mn

Ligand type:

Poly-pyridine

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Epoxidation

Max TON:

19.8

ee:

---

PDB:

3EMM

Notes:

---

Manganese(V) Porphycene Complex Responsible for Inert C–H Bond Hydroxylation in a Myoglobin Matrix

Metal:

Mn

Ligand type:

Amino acid; Porphycene

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

---

Reaction:

Hydroxylation

Max TON:

13

ee:

---

PDB:

5YL3

Notes:

---

Metal Incorporated Horseradish Peroxidase (HRP) Catalyzed Oxidation of Resveratrol: Selective Dimerization or Decomposition

Metal:

Ca; Co; Mn; Ni; Zn

Ligand type:

Undefined

Anchoring strategy:

Undefined

Optimization:

Chemical

Reaction:

Oxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

Oxidation of resveratrol. Dimerisation product obtained.

Multifunctional Nanoenzymes from Carbonic Anhydrase Skeleton

Metal:

Zn

Ligand type:

Amino acid

Host protein:

Carbonic anhydrase (CA)

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Hydrolysis

Max TON:

---

ee:

---

PDB:

---

Notes:

Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Hydrolysis of 4-nitrophenyl acetate.

Metal:

Rh

Ligand type:

Amino acid

Host protein:

Carbonic anhydrase (CA)

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Hydration

Max TON:

---

ee:

---

PDB:

---

Notes:

Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Hydration of styrene.

Metal:

Mn

Ligand type:

Amino acid

Host protein:

Carbonic anhydrase (CA)

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Oxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Oxidation of styrene.

Noncovalent Modulation of pH-Dependent Reactivity of a Mn–Salen Cofactor in Myoglobin with Hydrogen Peroxide

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

4.1

ee:

50

PDB:

---

Notes:

Sperm whale myoglobin

Oxidation Catalysis via Visible-Light Water Activation of a [Ru(bpy)3]2+ Chromophore BSA–Metallocorrole Couple

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

21

ee:

16

PDB:

---

Notes:

Water as oxygen source

Oxidation of Organic Molecules in Homogeneous Aqueous Solution Catalyzed by Hybrid Biocatalysts (Based on the Trojan Horse Strategy)

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 7A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

9

ee:

10

PDB:

---

Notes:

---

Metal:

Mn

Ligand type:

Porphyrin

Host protein:

Antibody 7A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Epoxidation

Max TON:

105

ee:

---

PDB:

---

Notes:

Imidazole as co-catalyst

Peroxidation of Pyrogallol by Antibody−Metalloporphyrin Complexes

Metal:

Mn

Ligand type:

Porphyrin

Host protein:

Antibody 03-1

Anchoring strategy:

Antibody

Optimization:

---

Max TON:

200

ee:

---

PDB:

---

Notes:

---

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 03-1

Anchoring strategy:

Antibody

Optimization:

---

Max TON:

300

ee:

---

PDB:

---

Notes:

---

Protein Scaffold of a Designed Metalloenzyme Enhances the Chemoselectivity in Sulfoxidation of Thioanisole

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

5.2

ee:

60

PDB:

---

Notes:

Sperm whale myoglobin

The Important Role of Covalent Anchor Positions in Tuning Catalytic Properties of a Rationally Designed MnSalen-Containing Metalloenzyme

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Covalent

Optimization:

Genetic

Reaction:

Sulfoxidation

Max TON:

---

ee:

83

PDB:

---

Notes:

Reaction rate: 2.3 min-1

The Protein Environment Drives Selectivity for Sulfide Oxidation by an Artificial Metalloenzyme

Metal:

Mn

Ligand type:

Salen

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

97

ee:

---

PDB:

---

Notes:

---

Towards Antibody-Mediated Metallo-Porphyrin Chemistry

Metal:

Mn

Ligand type:

Porphyrin

Host protein:

Antibody

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

549

ee:

---

PDB:

---

Notes:

---

Towards the Directed Evolution of Hybrid Catalysts

Metal:

Mn

Ligand type:

Salen

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Epoxidation

Max TON:

---

ee:

< 10

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Dipyridin-2-ylmethane

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Hydrogenation

Max TON:

---

ee:

< 10

PDB:

---

Notes:

---

Transforming Carbonic Anhydrase into Epoxide Synthase by Metal Exchange

Metal:

Mn

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

Epoxidation

Max TON:

4.1

ee:

52

PDB:

---

Notes:

---

Metal:

Mn

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

Epoxidation

Max TON:

10.3

ee:

40

PDB:

---

Notes:

---