Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

24 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

Abiological Catalysis by Artificial Haem Proteins Containing Noble Metals in Place of Iron

Enzymes that contain metal ions—that is, metalloenzymes—possess the reactivity of a transition metal centre and the potential of molecular evolution to modulate the reactivity and substrate-selectivity of the system1. By exploiting substrate promiscuity and protein engineering, the scope of reactions catalysed by native metalloenzymes has been expanded recently to include abiological transformations2,3. However, this strategy is limited by the inherent reactivity of metal centres in native metalloenzymes. To overcome this limitation, artificial metalloproteins have been created by incorporating complete, noble-metal complexes within proteins lacking native metal sites1,4,5. The interactions of the substrate with the protein in these systems are, however, distinct from those with the native protein because the metal complex occupies the substrate binding site. At the intersection of these approaches lies a third strategy, in which the native metal of a metalloenzyme is replaced with an abiological metal with reactivity different from that of the metal in a native protein6,7,8. This strategy could create artificial enzymes for abiological catalysis within the natural substrate binding site of an enzyme that can be subjected to directed evolution. Here we report the formal replacement of iron in Fe-porphyrin IX (Fe-PIX) proteins with abiological, noble metals to create enzymes that catalyse reactions not catalysed by native Fe-enzymes or other metalloenzymes9,10. In particular, we prepared modified myoglobins containing an Ir(Me) site that catalyse the functionalization of C–H bonds to form C–C bonds by carbene insertion and add carbenes to both β-substituted vinylarenes and unactivated aliphatic α-olefins. We conducted directed evolution of the Ir(Me)-myoglobin and generated mutants that form either enantiomer of the products of C–H insertion and catalyse the enantio- and diastereoselective cyclopropanation of unactivated olefins. The presented method of preparing artificial haem proteins containing abiological metal porphyrins sets the stage for the generation of artificial enzymes from innumerable combinations of PIX-protein scaffolds and unnatural metal cofactors to catalyse a wide range of abiological transformations.

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

7260

ee:

68

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

92

ee:

84

PDB:

---

Notes:

---

An Artificial Metalloenzyme with the Kinetics of Native Enzymes

Natural enzymes contain highly evolved active sites that lead to fast rates and high selectivities. Although artificial metalloenzymes have been developed that catalyze abiological transformations with high stereoselectivity, the activities of these artificial enzymes are much lower than those of natural enzymes. Here, we report a reconstituted artificial metalloenzyme containing an iridium porphyrin that exhibits kinetic parameters similar to those of natural enzymes. In particular, variants of the P450 enzyme CYP119 containing iridium in place of iron catalyze insertions of carbenes into C–H bonds with up to 98% enantiomeric excess, 35,000 turnovers, and 2550 hours−1 turnover frequency. This activity leads to intramolecular carbene insertions into unactivated C–H bonds and intermolecular carbene insertions into C–H bonds. These results lift the restrictions on merging chemical catalysis and biocatalysis to create highly active, productive, and selective metalloenzymes for abiological reactions.

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome P450 (CYP119)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

582

ee:

98

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome P450 (CYP119)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

35129

ee:

91

PDB:

---

Notes:

---

A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase

Metal:

Os

Ligand type:

Amino acid

Host protein:

TM1459 cupin

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

Dihydroxylation

Max TON:

45

ee:

---

PDB:

5WSE

Notes:

Exclusively cis dihydroxylation product obtained

Metal:

Os

Ligand type:

Amino acid

Host protein:

TM1459 cupin

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

Dihydroxylation

Max TON:

45

ee:

---

PDB:

5WSE

Notes:

Exclusively cis dihydroxylation product obtained

Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome P450 (CYP119)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

10181

ee:

98

PDB:

---

Notes:

Selectivity for cis product (cis/trans = 90:1)

Catalytic Properties and Specificity of the Extracellular Nuclease of Staphylococcus Aureus

Metal:

Sr

Ligand type:

Amino acid

Host protein:

Nuclease from S. aureus

Anchoring strategy:

Metal substitution

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

DNA cleavage

Catalytic Water Oxidation by Iridium-Modified Carbonic Anhydrase

Metal:

Ir

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Water oxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

Sodium periodate as sacrificial oxidant. TOF at pH 7 and 30°C is 39.8 min-1.

Chemoselective, Enzymatic C−H Bond Amination Catalyzed by a Cytochrome P450 Containing an Ir(Me)-PIX Cofactor

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome P450 (CYP119)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

294

ee:

26

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome P450 (CYP119)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

192

ee:

95

PDB:

---

Notes:

---

Direct Hydrogenation of Carbon Dioxide by an Artificial Reductase Obtained by Substituting Rhodium for Zinc in the Carbonic Anhydrase Catalytic Center. A Mechanistic Study

Metal:

Rh

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

---

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

Computational study of the reaction mechanism of the formation of HCOOH from CO2

Going Beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases

Metal:

Ni

Ligand type:

Amino acid

Host protein:

Rubredoxin (Rd)

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

H2 evolution

Max TON:

---

ee:

---

PDB:

---

Notes:

TOF = 149 s-1

Intramolecular C(sp3)-H Amination of Arylsulfonyl Azides with Engineered and Artificial Myoglobin-Based Catalysts

Metal:

Mn

Ligand type:

Amino acid; Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

142

ee:

---

PDB:

---

Notes:

---

Manganese-Substituted Carbonic Anhydrase as a New Peroxidase

Metal:

Mn

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

Epoxidation

Max TON:

22

ee:

67

PDB:

---

Notes:

---

Metal:

Mn

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

Epoxidation

Max TON:

9.5

ee:

55

PDB:

Notes:

PDB ID 4CAC = Structure of Zn containing hCAII

Metal Ion Dependent Binding of Sulphonamide to Carbonic Anhydrase

Metal:

Co

Ligand type:

Amino acid

Host protein:

Human carbonic anhydrase

Anchoring strategy:

Metal substitution

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

CO2 hydration

Metal:

Co

Ligand type:

Amino acid

Host protein:

Human carbonic anhydrase

Anchoring strategy:

Metal substitution

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

Ester cleavage

Metal Substitution in Thermolysin: Catalytic Properties of Tungstate Thermolysin in Sulfoxidation with H2O2

Metal:

W

Ligand type:

Amino acid

Host protein:

Thermolysin

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Multifunctional Nanoenzymes from Carbonic Anhydrase Skeleton

Metal:

Zn

Ligand type:

Amino acid

Host protein:

Carbonic anhydrase (CA)

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Hydrolysis

Max TON:

---

ee:

---

PDB:

---

Notes:

Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Hydrolysis of 4-nitrophenyl acetate.

Metal:

Rh

Ligand type:

Amino acid

Host protein:

Carbonic anhydrase (CA)

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Hydration

Max TON:

---

ee:

---

PDB:

---

Notes:

Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Hydration of styrene.

Metal:

Mn

Ligand type:

Amino acid

Host protein:

Carbonic anhydrase (CA)

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Oxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Oxidation of styrene.

Nickel-Substituted Rubredoxin as a Minimal Enzyme Model for Hydrogenase

Metal:

Ni

Ligand type:

Tetrathiolate

Host protein:

Rubredoxin (Rd)

Anchoring strategy:

Metal substitution

Optimization:

---

Reaction:

H2 evolution

Max TON:

300

ee:

---

PDB:

---

Notes:

---

Polymer Enzyme Conjugates as Chiral Ligands for Sharpless Dihydroxylation of Alkenes in Organic Solvents

Metal:

Os

Ligand type:

Amino acid

Host protein:

Laccase

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Dihydroxylation

Max TON:

80

ee:

98

PDB:

---

Notes:

---

Protein Secondary-Shell Interactions Enhance the Photoinduced Hydrogen Production of Cobalt Protoporphyrin IX

Metal:

Co

Ligand type:

Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

H2 evolution

Max TON:

518

ee:

---

PDB:

---

Notes:

---

Rare Earth Metal Ions as Probes of Calcium Binding Sites in Proteins: Neodynium Acceleration of the Activation of Trypsinogen

Metal:

Nd

Ligand type:

Amino acid

Host protein:

Trypsin

Anchoring strategy:

Metal substitution

Optimization:

---

Max TON:

<1

ee:

---

PDB:

---

Notes:

---

Reengineering Cyt b562 for Hydrogen Production: A Facile Route to Artificial Hydrogenases

Metal:

Co

Ligand type:

Porphyrin

Host protein:

Cytochrome b562

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

H2 evolution

Max TON:

1450

ee:

---

PDB:

---

Notes:

---

Regioselective Hydroformylation of Styrene Using Rhodium-Substituted Carbonic Anhydrase

Metal:

Rh

Ligand type:

Acac; Carbonyl

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

Hydroformylation

Max TON:

298

ee:

---

PDB:

4CAC

Notes:

PDB ID 4CAC = Structure of Zn containing hCAII

Semisynthetic and Biomolecular Hydrogen Evolution Catalysts

Metal:

Co

Ligand type:

Porphyrin

Host protein:

Cytochrome c552

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

H2 evolution

Max TON:

27000

ee:

---

PDB:

---

Notes:

Electrocatalysis

Stereoselective Hydrogenation of Olefins Using Rhodium-Substituted Carbonic Anhydrase—A New Reductase

Metal:

Rh

Ligand type:

COD

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

Hydrogenation

Max TON:

15.8

ee:

---

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

COD

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

Hydrogenation

Max TON:

80.5

ee:

---

PDB:

Notes:

PDB ID 4CAC = Structure of Zn containing hCAII

Studies on the Oxidase Activity of Copper (II) Carboxypeptidase A

Metal:

Cu

Ligand type:

Amino acid

Host protein:

Carboxypeptidase A

Anchoring strategy:

Metal substitution

Optimization:

---

Reaction:

Oxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

Oxidation of vitamin C

Transforming Carbonic Anhydrase into Epoxide Synthase by Metal Exchange

Metal:

Mn

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

Epoxidation

Max TON:

4.1

ee:

52

PDB:

---

Notes:

---

Metal:

Mn

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

Epoxidation

Max TON:

10.3

ee:

40

PDB:

---

Notes:

---