3 publications

3 publications

A Hydrogenase Model System Based on the Sequence of Cytochrome c: Photochemical Hydrogen Evolution in Aqueous Media

Hayashi, T

Chem. Commun., 2011, 10.1039/c1cc11157d

The diiron carbonyl cluster is held by a native CXXC motif, which includes Cys14 and Cys17, in the cytochrome c sequence. It is found that the diiron carbonyl complex works well as a catalyst for H2 evolution. It has a TON of ∼80 over 2 h at pH 4.7 in the presence of a Ru-photosensitizer and ascorbate as a sacrificial reagent in aqueous media.


Metal: Fe
Ligand type: Carbonyl
Host protein: Cytochrome c
Anchoring strategy: Dative
Optimization: ---
Reaction: H2 evolution
Max TON: 82
ee: ---
PDB: ---
Notes: Horse heart cytochrome C

A Rhodium Complex-Linked β-Barrel Protein as a Hybrid Biocatalyst for Phenylacetylene Polymerization

Hayashi, T

Chem. Commun., 2012, 10.1039/C2CC35165J

Our group recently prepared a hybrid catalyst containing a rhodium complex, Rh(Cp)(cod), with a maleimide moiety at the peripheral position of the Cp ligand. This compound was then inserted into a β-barrel protein scaffold of a mutant of aponitrobindin (Q96C) via a covalent linkage. The hybrid protein is found to act as a polymerization catalyst and preferentially yields trans-poly(phenylacetylene) (PPA), although the rhodium complex without the protein scaffold normally produces cis PPA.


Metal: Rh
Ligand type: COD; Cp*
Host protein: Nitrobindin (Nb)
Anchoring strategy: Cystein-maleimide
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: ---

C(sp3)–H Bond Hydroxylation Catalyzed by Myoglobin Reconstituted with Manganese Porphycene

Hayashi, T

J. Am. Chem. Soc., 2013, 10.1021/ja409404k


Metal: Mn
Ligand type: Porphycene
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: ---
Reaction: Hydroxylation
Max TON: ---
ee: ---
PDB: 2WI8
Notes: ---