6 publications

6 publications

A Designed Supramolecular Protein Assembly with In Vivo Enzymatic Activity

Tezcan, F.A.

Science 2014, 346, 1525-1528, 10.1126/science.1259680

The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(kcat/Km)/kuncat] for ampicillin hydrolysis of 2.3 × 106 and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.


Metal: Zn
Ligand type: Amino acid
Host protein: Cytochrome cb562
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: 4U9E
Notes: ---

Constructing Protein Polyhedra via Orthogonal Chemical Interactions

Tezcan, F.A.

Nature 2020, 578, 172-176, 10.1038/s41586-019-1928-2

Many proteins exist naturally as symmetrical homooligomers or homopolymers1. The emergent structural and functional properties of such protein assemblies have inspired extensive efforts in biomolecular design2,3,4,5. As synthesized by ribosomes, proteins are inherently asymmetric. Thus, they must acquire multiple surface patches that selectively associate to generate the different symmetry elements needed to form higher-order architectures1,6—a daunting task for protein design. Here we address this problem using an inorganic chemical approach, whereby multiple modes of protein–protein interactions and symmetry are simultaneously achieved by selective, ‘one-pot’ coordination of soft and hard metal ions. We show that a monomeric protein (protomer) appropriately modified with biologically inspired hydroxamate groups and zinc-binding motifs assembles through concurrent Fe3+ and Zn2+ coordination into discrete dodecameric and hexameric cages. Our cages closely resemble natural polyhedral protein architectures7,8 and are, to our knowledge, unique among designed systems9,10,11,12,13 in that they possess tightly packed shells devoid of large apertures. At the same time, they can assemble and disassemble in response to diverse stimuli, owing to their heterobimetallic construction on minimal interprotein-bonding footprints. With stoichiometries ranging from [2 Fe:9 Zn:6 protomers] to [8 Fe:21 Zn:12 protomers], these protein cages represent some of the compositionally most complex protein assemblies—or inorganic coordination complexes—obtained by design.


Metal: Fe; Zn
Ligand type: Hydroxaamate
Host protein: Cytochrome cb562
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Reaction: ---
Max TON: ---
ee: ---
PDB: BMC2
Notes: ---

Design and Construction of Functional Supramolecular Metalloprotein Assemblies

Review

Tezcan, F.A.

Acc. Chem. Res. 2019, 52, 345-355, 10.1021/acs.accounts.8b00617

Nature puts to use only a small fraction of metal ions in the periodic table. Yet, when incorporated into protein scaffolds, this limited set of metal ions carry out innumerable cellular functions and execute essential biochemical transformations such as photochemical H2O oxidation, O2 or CO2 reduction, and N2 fixation, highlighting the outsized importance of metalloproteins in biology. Not surprisingly, elucidating the intricate interplay between metal ions and protein structures has been the focus of extensive structural and mechanistic scrutiny over the last several decades. As a result of such top-down efforts, we have gained a reasonably detailed understanding of how metal ions shape protein structures and how protein structures in turn influence metal reactivity. It is fair to say that we now have some idea–and in some cases, a good idea–about how most known metalloproteins function and we possess enough insight to quickly assess the modus operandi of newly discovered ones. However, translating this knowledge into an ability to construct functional metalloproteins from scratch represents a challenge at a whole different level: it is one thing to know how an automobile works; it is another to build one. In our quest to build new metalloproteins, we have taken an original approach in which folded, monomeric proteins are used as ligands or synthons for building supramolecular complexes through metal-mediated self-assembly (MDPSA, Metal-Directed Protein Self-Assembly). The interfaces in the resulting protein superstructures are subsequently tailored with covalent, noncovalent, or additional metal-coordination interactions for stabilization and incorporation of new functionalities (MeTIR, Metal Templated Interface Redesign). In an earlier Account, we had described the proof-of-principle studies for MDPSA and MeTIR, using a four-helix bundle, heme protein cytochrome cb562 (cyt cb562), as a model building block. By the end of those studies, we were able to demonstrate that a tetrameric, Zn-directed cyt cb562 complex (Zn4:M14) could be stabilized through computationally prescribed noncovalent interactions inserted into the nascent protein–protein interfaces. In this Account, we first describe the rationale and motivation for our particular metalloprotein engineering strategy and a brief summary of our earlier work. We then describe the next steps in the “evolution” of bioinorganic complexity on the Zn4:M14 scaffold, namely, (a) the generation of a self-standing protein assembly that can stably and selectively bind metal ions, (b) the creation of reactive metal centers within the protein assembly, and (c) the coupling of metal coordination and reactivity to external stimuli through allosteric effects.


Notes: ---

Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo-β-Lactamases

Song, W.J.; Tezcan, F.A.

J. Am. Chem. Soc. 2017, 139, 16772-16779, 10.1021/jacs.7b08981

We describe the design and evolution of catalytic hydrolase activity on a supramolecular protein scaffold, Zn4:C96RIDC14, which was constructed from cytochrome cb562 building blocks via a metal-templating strategy. Previously, we reported that Zn4:C96RIDC14 could be tailored with tripodal (His/His/Glu), unsaturated Zn coordination motifs in its interfaces to generate a variant termed Zn8:A104AB34, which in turn displayed catalytic activity for the hydrolysis of activated esters and β-lactam antibiotics. Zn8:A104AB34 was subsequently subjected to directed evolution via an in vivo selection strategy, leading to a variant Zn8:A104/G57AB34 which displayed enzyme-like Michaelis–Menten behavior for ampicillin hydrolysis. A criterion for the evolutionary utility or designability of a new protein structure is its ability to accommodate different active sites. With this in mind, we examined whether Zn4:C96RIDC14 could be tailored with alternative Zn coordination sites that could similarly display evolvable catalytic activities. We report here a detailed structural and functional characterization of new variant Zn8:AB54, which houses similar, unsaturated Zn coordination sites to those in Zn8:A104/G57AB34, but in completely different microenvironments. Zn8:AB54 displays Michaelis–Menten behavior for ampicillin hydrolysis without any optimization. Yet, the subsequent directed evolution of Zn8:AB54 revealed limited catalytic improvement, which we ascribed to the local protein rigidity surrounding the Zn centers and the lack of evolvable loop structures nearby. The relaxation of local rigidity via the elimination of adjacent disulfide linkages led to a considerable structural transformation with a concomitant improvement in β-lactamase activity. Our findings reaffirm previous observations that the delicate balance between protein flexibility and stability is crucial for enzyme design and evolution.


Metal: Zn
Ligand type: Amino acid
Host protein: Zn8:AB54
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Hydrolysis
Max TON: ---
ee: ---
PDB: 5XZI
Notes: Supramolecular protein scaffold constructed from cytochrome cb562 building blocks, Ampicillin hydrolysis: kcat/KM = 130 min-1 * M-1

Metal: Zn
Ligand type: Amino acid
Host protein: Zn8:AB54 (mutant C96T)
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Hydrolysis
Max TON: ---
ee: ---
PDB: 5XZJ
Notes: Supramolecular protein scaffold constructed from cytochrome cb562 building blocks, Ampicillin hydrolysis: kcat/KM = 210 min-1 * M-1

Interfacial Metal Coordination in Engineered Protein and Peptide Assemblies

Review

Tezcan, F.A.

Curr. Opin. Chem. Biol. 2014, 19, 42-49, 10.1016/j.cbpa.2013.12.013

Metal ions are frequently found in natural protein–protein interfaces, where they stabilize quaternary or supramolecular protein structures, mediate transient protein–protein interactions, and serve as catalytic centers. Paralleling these natural roles, coordination chemistry of metal ions is being increasingly utilized in creative ways toward engineering and controlling the assembly of functional supramolecular peptide and protein architectures. Here we provide a brief overview of this emerging branch of metalloprotein/peptide engineering and highlight a few select examples from the recent literature that best capture the diversity and future potential of approaches that are being developed.


Notes: ---

Metal-Directed Design of Supramolecular Protein Assemblies

Review

Tezcan, F.A.

Methods Enzymol. 2016, 10.1016/bs.mie.2016.05.009

Owing to their central roles in cellular signaling, construction, and biochemistry, protein–protein interactions (PPIs) and protein self-assembly have become a major focus of molecular design and synthetic biology. In order to circumvent the complexity of constructing extensive noncovalent interfaces, which are typically involved in natural PPIs and protein self-assembly, we have developed two design strategies, metal-directed protein self-assembly (MDPSA) and metal-templated interface redesign (MeTIR). These strategies, inspired by both the proposed evolutionary roles of metals and their prevalence in natural PPIs, take advantage of the favorable properties of metal coordination (bonding strength, directionality, and reversibility) to guide protein self-assembly with minimal design and engineering. Using a small, monomeric protein (cytochrome cb562) as a model building block, we employed MDPSA and MeTIR to create a diverse array of functional supramolecular architectures which range from structurally tunable oligomers to metalloprotein complexes that can properly self-assemble in living cells into novel metalloenzymes. The design principles and strategies outlined herein should be readily applicable to other protein systems with the goal of creating new PPIs and protein assemblies with structures and functions not yet produced by natural evolution.


Notes: ---