2 publications

2 publications

Construction of Robust Bio-Nanotubes using the Controlled Self-Assembly of Component Proteins of Bacteriophage T4

Ueno, T.

Small 2010, 6, 1873-1879, 10.1002/smll.201000772

The synthesis of a robust bio‐nanotube consisting of the β‐helical tubular component proteins of bacteriophage T4 is described. The crystal structure indicates that it has a well‐defined nanoscale length of 10 nm as a result of the head‐to‐head dimerization of β‐helices. Surprisingly, the tube assembly has high thermal stability, high tolerance to organic solvents, and a wide pH‐stability range.


Metal: Cu
Ligand type: Flavin
Host protein: [(gp5βf)3]2
Anchoring strategy: Lysine-succinimide
Optimization: ---
Reaction: Cycloaddition
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Dual Modification of a Triple-Stranded β-Helix Nanotube with Ru and Re Metal Complexes to Promote Photocatalytic Reduction of CO2

Ueno, T.

Chem. Commun. 2011, 47, 2074, 10.1039/C0CC03015E

We have constructed a robust β-helical nanotube from the component proteins of bacteriophage T4 and modified this nanotube with RuII(bpy)3 and ReI(bpy)(CO)3Cl complexes. The photocatalytic system arranged on the tube catalyzes the reduction of CO2 with higher reactivity than that of the mixture of the monomeric forms.


Metal: Re
Ligand type: Bipyridine; CO
Host protein: [(gp5βf)3]2
Anchoring strategy: Cystein-maleimide
Optimization: ---
Reaction: CO2 reduction
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Bipyridine
Host protein: [(gp5βf)3]2
Anchoring strategy: Lysine-succinimide
Optimization: Genetic
Reaction: CO2 reduction
Max TON: ---
ee: ---
PDB: ---
Notes: ---