Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

33 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A De Novo Designed Metalloenzyme for the Hydration of CO2

Protein design will ultimately allow for the creation of artificial enzymes with novel functions and unprecedented stability. To test our current mastery of nature’s approach to catalysis, a ZnII metalloenzyme was prepared using de novo design. α3DH3 folds into a stable single‐stranded three‐helix bundle and binds ZnII with high affinity using His3O coordination. The resulting metalloenzyme catalyzes the hydration of CO2 better than any small molecule model of carbonic anhydrase and with an efficiency within 1400‐fold of the fastest carbonic anhydrase isoform, CAII, and 11‐fold of CAIII.

Metal:

Zn

Ligand type:

Amino acid

Host protein:

α3D peptide

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

kcat/KM ≈ 3.8*104 M-1*s-1

A Designed Supramolecular Protein Assembly with In Vivo Enzymatic Activity

The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(kcat/Km)/kuncat] for ampicillin hydrolysis of 2.3 × 106 and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.

Metal:

Zn

Ligand type:

Amino acid

Host protein:

Cytochrome cb562

Anchoring strategy:

Dative

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

4U9E

Notes:

---

A General Method for Artificial Metalloenzyme Formationthrough Strain-Promoted Azide–Alkyne Cycloaddition

Strain‐promoted azide–alkyne cycloaddition (SPAAC) can be used to generate artificial metalloenzymes (ArMs) from scaffold proteins containing a p‐azido‐L‐phenylalanine (Az) residue and catalytically active bicyclononyne‐substituted metal complexes. The high efficiency of this reaction allows rapid ArM formation when using Az residues within the scaffold protein in the presence of cysteine residues or various reactive components of cellular lysate. In general, cofactor‐based ArM formation allows the use of any desired metal complex to build unique inorganic protein materials. SPAAC covalent linkage further decouples the native function of the scaffold from the installation process because it is not affected by native amino acid residues; as long as an Az residue can be incorporated, an ArM can be generated. We have demonstrated the scope of this method with respect to both the scaffold and cofactor components and established that the dirhodium ArMs generated can catalyze the decomposition of diazo compounds and both SiH and olefin insertion reactions involving these carbene precursors.

Metal:

Rh

Ligand type:

Poly-carboxylic acid

Host protein:

tHisF

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Cyclopropanation

Max TON:

81

ee:

---

PDB:

1THF

Notes:

---

Metal:

Rh

Ligand type:

Poly-carboxylic acid

Host protein:

tHisF

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Si-H Insertion

Max TON:

7

ee:

---

PDB:

1THF

Notes:

---

An Artificial Imine Reductase Based on the Ribonuclease S Scaffold

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Ribonuclease S

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

4

ee:

18

PDB:

---

Notes:

---

An Artificial Oxygenase Built from Scratch: Substrate Binding Site Identified Using a Docking Approach

The substrate for an artificial iron monooxygenase was selected by using docking calculations. The high catalytic efficiency of the reported enzyme for sulfide oxidation was directly correlated to the predicted substrate binding mode in the protein cavity, thus illustrating the synergetic effect of the substrate binding site, protein scaffold, and catalytic site.

Metal:

Fe

Ligand type:

BPMCN; BPMEN

Host protein:

NikA

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

199

ee:

≤5

PDB:

---

Notes:

---

Artificial Metalloenzymes Containing an Organometallic Active Site

Review

Notes:

Book chapter

Artificial Metalloenzymes Derived from Bovine β-Lactoglobulin for the Asymmetric Transfer Hydrogenation of an Aryl Ketone – Synthesis, Characterization and Catalytic Activity

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

ß-lactoglobulin

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

14

ee:

32

PDB:

---

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis

Review

Notes:

---

Catalyst Design in Oxidation Chemistry; from KMnO4 to Artificial Metalloenzymes

Review

Notes:

---

Catalytic Efficiency of Designed Catalytic Proteins

Review

Notes:

---

Cobaloxime-Based Artificial Hydrogenase

Metal:

Co

Ligand type:

Oxime

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

H2 evolution

Max TON:

5

ee:

---

PDB:

---

Notes:

Sperm whale myoglobin

Computational Insights on an Artificial Imine Reductase Based on the Biotin-Streptavidin Technology

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

---

ee:

96

PDB:

3PK2

Notes:

Prediction of the enantioselectivity by computational methods.

Designing Hydrolytic Zinc Metalloenzymes

Review

Notes:

---

Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

188

ee:

43

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino carboxylic acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4

ee:

21

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Pyrazine amide

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

26

ee:

16

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

12

ee:

13

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Oxazoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

102

ee:

14

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

94

ee:

67

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino amide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

10

ee:

7

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino carboxylic acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

8

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Pyrazine amide

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4

ee:

6

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Oxazoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

8

ee:

0

PDB:

---

Notes:

---

High-Level Secretion of Recombinant Full-Length Streptavidin in Pichia Pastoris and its Application to Enantioselective Catalysis

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

152

ee:

61

PDB:

---

Notes:

Sav expression in E. coli

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

158

ee:

64

PDB:

---

Notes:

Sav expression in P. pastoris

Interfacial Metal Coordination in Engineered Protein and Peptide Assemblies

Review

Notes:

---

Intramolecular C(sp3)-H Amination of Arylsulfonyl Azides with Engineered and Artificial Myoglobin-Based Catalysts

Metal:

Mn

Ligand type:

Amino acid; Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

142

ee:

---

PDB:

---

Notes:

---

Manganese Terpyridine Artificial Metalloenzymes for Benzylic Oxygenation and Olefin Epoxidation

Metal:

Mn

Ligand type:

Poly-pyridine

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

Chemical

Max TON:

19.2

ee:

---

PDB:

3EMM

Notes:

---

Metal:

Mn

Ligand type:

Poly-pyridine

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Epoxidation

Max TON:

19.8

ee:

---

PDB:

3EMM

Notes:

---

Metalloenzyme Design and Engineering through Strategic Modifications of Native Protein Scaffolds

Review

Notes:

---

Mimicking Hydrogenases: From Biomimetics to Artificial Enzymes

Review

Notes:

---

Neocarzinostatin-Based Hybrid Biocatalysts for Oxidation Reactions

Metal:

Fe

Ligand type:

Porphyrin

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

6

ee:

13

PDB:

---

Notes:

---

Neocarzinostatin-Based Hybrid Biocatalysts with a RNase like Activity

Metal:

Zn

Ligand type:

Poly-pyridine

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

kcat/KM = 13.6 M-1 * s-1

Neutralizing the Detrimental Effect of Glutathione on Precious Metal Catalysts

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

98

ee:

85

PDB:

---

Notes:

Reaction in cell-free extract with diamide

Photoinduced Hydrogen Evolution Catalyzed by a Synthetic Diiron Dithiolate Complex Embedded within a Protein Matrix

Metal:

Fe

Ligand type:

Carbonyl; Dithiolate

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

H2 evolution

Max TON:

130

ee:

---

PDB:

---

Notes:

---

Porous Protein Crystals as Catalytic Vessels for Organometallic Complexes

Metal:

Ru

Ligand type:

Benzene

Host protein:

Lysozyme (crystal)

Anchoring strategy:

Dative

Optimization:

---

Max TON:

---

ee:

---

PDB:

3W6A

Notes:

Tetragonal HEWL crystals

Metal:

Ru

Ligand type:

Benzene

Host protein:

Lysozyme (crystal)

Anchoring strategy:

Dative

Optimization:

---

Max TON:

---

ee:

---

PDB:

3W6A

Notes:

Orthorhombic HEWL crystals

Protein Design: Toward Functional Metalloenzymes

Review

Notes:

---

Protein Secondary-Shell Interactions Enhance the Photoinduced Hydrogen Production of Cobalt Protoporphyrin IX

Metal:

Co

Ligand type:

Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

H2 evolution

Max TON:

518

ee:

---

PDB:

---

Notes:

---

Recent Achievements in the Design and Engineering of Artificial Metalloenzymes

Review

Notes:

---

Rhodium-Complex-Linked Hybrid Biocatalyst: Stereo-Controlled Phenylacetylene Polymerization within an Engineered Protein Cavity

Metal:

Rh

Ligand type:

COD; Cp*

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Cystein-maleimide

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

3WJC

Notes:

---

Structural, Kinetic, and Docking Studies of Artificial Imine Reductases Based on Biotin−Streptavidin Technology: An Induced Lock-and-Key Hypothesis

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

---

ee:

93

PDB:

---

Notes:

---