33 publications

33 publications

A De Novo Designed Metalloenzyme for the Hydration of CO2

Pecoraro, V. L.

Angew. Chem., Int. Ed., 2014, 10.1002/anie.201404925

Protein design will ultimately allow for the creation of artificial enzymes with novel functions and unprecedented stability. To test our current mastery of nature’s approach to catalysis, a ZnII metalloenzyme was prepared using de novo design. α3DH3 folds into a stable single‐stranded three‐helix bundle and binds ZnII with high affinity using His3O coordination. The resulting metalloenzyme catalyzes the hydration of CO2 better than any small molecule model of carbonic anhydrase and with an efficiency within 1400‐fold of the fastest carbonic anhydrase isoform, CAII, and 11‐fold of CAIII.


Metal: Zn
Ligand type: Amino acid
Host protein: α3D peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: ---
Notes: kcat/KM ≈ 3.8*104 M-1*s-1

A Designed Supramolecular Protein Assembly with In Vivo Enzymatic Activity

Tezcan, F. A.

Science, 2014, 10.1126/science.1259680

The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(kcat/Km)/kuncat] for ampicillin hydrolysis of 2.3 × 106 and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.


Metal: Zn
Ligand type: Amino acid
Host protein: Cytochrome cb562
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: 4U9E
Notes: ---

A General Method for Artificial Metalloenzyme Formationthrough Strain-Promoted Azide–Alkyne Cycloaddition

Lewis, J. C.

ChemBioChem, 2014, 10.1002/cbic.201300661

Strain‐promoted azide–alkyne cycloaddition (SPAAC) can be used to generate artificial metalloenzymes (ArMs) from scaffold proteins containing a p‐azido‐L‐phenylalanine (Az) residue and catalytically active bicyclononyne‐substituted metal complexes. The high efficiency of this reaction allows rapid ArM formation when using Az residues within the scaffold protein in the presence of cysteine residues or various reactive components of cellular lysate. In general, cofactor‐based ArM formation allows the use of any desired metal complex to build unique inorganic protein materials. SPAAC covalent linkage further decouples the native function of the scaffold from the installation process because it is not affected by native amino acid residues; as long as an Az residue can be incorporated, an ArM can be generated. We have demonstrated the scope of this method with respect to both the scaffold and cofactor components and established that the dirhodium ArMs generated can catalyze the decomposition of diazo compounds and both SiH and olefin insertion reactions involving these carbene precursors.


Metal: Rh
Ligand type: Poly-carboxylic acid
Host protein: tHisF
Anchoring strategy: Covalent
Optimization: ---
Reaction: Cyclopropanation
Max TON: 81
ee: ---
PDB: 1THF
Notes: ---

Metal: Rh
Ligand type: Poly-carboxylic acid
Host protein: tHisF
Anchoring strategy: Covalent
Optimization: ---
Reaction: Si-H Insertion
Max TON: 7
ee: ---
PDB: 1THF
Notes: ---

An Artificial Imine Reductase Based on the Ribonuclease S Scaffold

Ward, T. R.

ChemCatChem, 2014, 10.1002/cctc.201300995


Metal: Ir
Ligand type: Amino acid; Cp*
Host protein: Ribonuclease S
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 4
ee: 18
PDB: ---
Notes: ---

An Artificial Oxygenase Built from Scratch: Substrate Binding Site Identified Using a Docking Approach

Cavazza, C.; Ménage, S.

Angew. Chem., Int. Ed., 2014, 10.1002/anie.201209021

The substrate for an artificial iron monooxygenase was selected by using docking calculations. The high catalytic efficiency of the reported enzyme for sulfide oxidation was directly correlated to the predicted substrate binding mode in the protein cavity, thus illustrating the synergetic effect of the substrate binding site, protein scaffold, and catalytic site.


Metal: Fe
Ligand type: BPMCN; BPMEN
Host protein: NikA
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 199
ee: ≤5
PDB: ---
Notes: ---

Artificial Metalloenzymes Containing an Organometallic Active Site

Review

Onoda, A.; Salmain, M.

Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging, 2014, 10.1002/9783527673438.ch10


Notes: Book chapter

Artificial Metalloenzymes Derived from Bovine β-Lactoglobulin for the Asymmetric Transfer Hydrogenation of an Aryl Ketone – Synthesis, Characterization and Catalytic Activity

Salmain, M.

Dalton Trans., 2014, 10.1039/c3dt53253d


Metal: Rh
Ligand type: Cp*; Poly-pyridine
Host protein: ß-lactoglobulin
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Hydrogenation
Max TON: 14
ee: 32
PDB: ---
Notes: ---

Artificial Metalloenzymes for Enantioselective Catalysis

Review

Roelfes, G.

Curr. Opin. Chem. Biol., 2014, 10.1016/j.cbpa.2014.02.002


Notes: ---

Catalyst Design in Oxidation Chemistry; from KMnO4 to Artificial Metalloenzymes

Review

Jarvis, A. G.; Kamer, P. C. J.

Bioorg. Med. Chem., 2014, 10.1016/j.bmc.2014.07.002


Notes: ---

Catalytic Efficiency of Designed Catalytic Proteins

Review

DeGrado, W. F.; Korendovych, I. V.

Curr. Opin. Struct. Biol., 2014, 10.1016/j.sbi.2014.06.006


Notes: ---

Cobaloxime-Based Artificial Hydrogenase

Artero, V.

Inorg. Chem., 2014, 10.1021/ic501014c


Metal: Co
Ligand type: Oxime
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: H2 evolution
Max TON: 5
ee: ---
PDB: ---
Notes: Sperm whale myoglobin

Computational Insights on an Artificial Imine Reductase Based on the Biotin-Streptavidin Technology

Maréchal, J.-D.

ACS Catal., 2014, 10.1021/cs400921n


Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: ---
ee: 96
PDB: 3PK2
Notes: Prediction of the enantioselectivity by computational methods.

Designing Hydrolytic Zinc Metalloenzymes

Review

Pecoraro, V. L.

Biochemistry, 2014, 10.1021/bi4016617


Notes: ---

Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology

Ward, T. R.

ChemCatChem, 2014, 10.1002/cctc.201300825


Metal: Ir
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 188
ee: 43
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Amino carboxylic acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 4
ee: 21
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 0
ee: ---
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 0
ee: ---
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Cp*; Pyrazine amide
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 26
ee: 16
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Bipyridine; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 0
ee: ---
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 12
ee: 13
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Cp*; Oxazoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 102
ee: 14
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 94
ee: 67
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino amide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 10
ee: 7
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino carboxylic acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 8
ee: 1
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 6
ee: 1
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 6
ee: 1
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Cp*; Pyrazine amide
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 6
ee: 1
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Bipyridine; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 4
ee: 6
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 6
ee: 1
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Cp*; Oxazoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 8
ee: 0
PDB: ---
Notes: ---

High-Level Secretion of Recombinant Full-Length Streptavidin in Pichia Pastoris and its Application to Enantioselective Catalysis

Jaussi, R.

Protein Expression Purif., 2014, 10.1016/j.pep.2013.10.015


Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 152
ee: 61
PDB: ---
Notes: Sav expression in E. coli

Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 158
ee: 64
PDB: ---
Notes: Sav expression in P. pastoris

Interfacial Metal Coordination in Engineered Protein and Peptide Assemblies

Review

Tezcan, F. A.

Curr. Opin. Chem. Biol., 2014, 10.1016/j.cbpa.2013.12.013


Notes: ---

Intramolecular C(sp3)-H Amination of Arylsulfonyl Azides with Engineered and Artificial Myoglobin-Based Catalysts

Fasan, R.

Bioorg. Med. Chem., 2014, 10.1016/j.bmc.2014.05.015


Metal: Mn
Ligand type: Amino acid; Porphyrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Metal substitution
Optimization: Chemical & genetic
Reaction: C-H activation
Max TON: 142
ee: ---
PDB: ---
Notes: ---

Manganese Terpyridine Artificial Metalloenzymes for Benzylic Oxygenation and Olefin Epoxidation

Lewis, J. C.

Tetrahedron, 2014, 10.1016/j.tet.2014.03.008


Metal: Mn
Ligand type: Poly-pyridine
Host protein: Nitrobindin (Nb)
Anchoring strategy: Covalent
Optimization: Chemical
Max TON: 19.2
ee: ---
PDB: 3EMM
Notes: ---

Metal: Mn
Ligand type: Poly-pyridine
Host protein: Nitrobindin (Nb)
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Epoxidation
Max TON: 19.8
ee: ---
PDB: 3EMM
Notes: ---

Metalloenzyme Design and Engineering through Strategic Modifications of Native Protein Scaffolds

Review

Lu, Y.

Curr. Opin. Chem. Biol., 2014, 10.1016/j.cbpa.2014.01.006


Notes: ---

Mimicking Hydrogenases: From Biomimetics to Artificial Enzymes

Review

Artero, V.

Coord. Chem. Rev., 2014, 10.1016/j.ccr.2013.12.018


Notes: ---

Neocarzinostatin-Based Hybrid Biocatalysts for Oxidation Reactions

Mahy, J.-P.; Ricoux, R.

Dalton Trans., 2014, 10.1039/c4dt00151f


Metal: Fe
Ligand type: Porphyrin
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 6
ee: 13
PDB: ---
Notes: ---

Neocarzinostatin-Based Hybrid Biocatalysts with a RNase like Activity

Mahy, J.-P.; Ricoux, R.

Bioorg. Med. Chem., 2014, 10.1016/j.bmc.2014.05.063


Metal: Zn
Ligand type: Poly-pyridine
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: kcat/KM = 13.6 M-1 * s-1

Neutralizing the Detrimental Effect of Glutathione on Precious Metal Catalysts

Ward, T. R.

J. Am. Chem. Soc., 2014, 10.1021/ja500613n


Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 98
ee: 85
PDB: ---
Notes: Reaction in cell-free extract with diamide

Photoinduced Hydrogen Evolution Catalyzed by a Synthetic Diiron Dithiolate Complex Embedded within a Protein Matrix

Onoda, A.

ACS Catal., 2014, 10.1021/cs500392e


Metal: Fe
Ligand type: Carbonyl; Dithiolate
Host protein: Nitrobindin (Nb)
Anchoring strategy: Covalent
Optimization: ---
Reaction: H2 evolution
Max TON: 130
ee: ---
PDB: ---
Notes: ---

Porous Protein Crystals as Catalytic Vessels for Organometallic Complexes

Kitagawa, S.; Ueno, T.

Chem. - Asian J., 2014, 10.1002/asia.201301347


Metal: Ru
Ligand type: Benzene
Host protein: Lysozyme (crystal)
Anchoring strategy: Dative
Optimization: ---
Max TON: ---
ee: ---
PDB: 3W6A
Notes: Tetragonal HEWL crystals

Metal: Ru
Ligand type: Benzene
Host protein: Lysozyme (crystal)
Anchoring strategy: Dative
Optimization: ---
Max TON: ---
ee: ---
PDB: 4J7V
Notes: Orthorhombic HEWL crystals

Protein Design: Toward Functional Metalloenzymes

Review

Pecoraro, V. L.

Chem. Rev., 2014, 10.1021/cr400458x


Notes: ---

Protein Secondary-Shell Interactions Enhance the Photoinduced Hydrogen Production of Cobalt Protoporphyrin IX

Ghirlanda, G.

Chem. Commun., 2014, 10.1039/c4cc06700b


Metal: Co
Ligand type: Porphyrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Metal substitution
Optimization: Genetic
Reaction: H2 evolution
Max TON: 518
ee: ---
PDB: ---
Notes: ---

Recent Achievements in the Design and Engineering of Artificial Metalloenzymes

Review

Ward, T. R.

Curr. Opin. Chem. Biol., 2014, 10.1016/j.cbpa.2014.01.018


Notes: ---

Rhodium-Complex-Linked Hybrid Biocatalyst: Stereo-Controlled Phenylacetylene Polymerization within an Engineered Protein Cavity

ChemCatChem, 2014, 10.1002/cctc.201301055


Metal: Rh
Ligand type: COD; Cp*
Host protein: Nitrobindin (Nb)
Anchoring strategy: Cystein-maleimide
Optimization: Genetic
Max TON: ---
ee: ---
PDB: 3WJC
Notes: ---

Structural, Kinetic, and Docking Studies of Artificial Imine Reductases Based on Biotin−Streptavidin Technology: An Induced Lock-and-Key Hypothesis

Maréchal, J.-D.; Ward, T. R.

J. Am. Chem. Soc., 2014, 10.1021/ja508258t


Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: ---
ee: 93
PDB: ---
Notes: ---