7 publications

7 publications

An Artificial Metalloenzyme for Olefin Metathesis

Hilvert, D.; Ward, T.R.

Chem. Commun. 2011, 47, 12068, 10.1039/c1cc15005g

A Grubbs–Hoveyda type olefin metathesis catalyst, equipped with an electrophilic bromoacetamide group, was used to modify a cysteine-containing variant of a small heat shock protein from Methanocaldococcus jannaschii. The resulting artificial metalloenzyme was found to be active under acidic conditions in a benchmark ring closing metathesis reaction.


Metal: Ru
Ligand type: Carbene
Anchoring strategy: Covalent
Optimization: ---
Reaction: Olefin metathesis
Max TON: 25
ee: ---
PDB: ---
Notes: RCM

A Noncanonical Proximal Heme Ligand Affords an Efficient Peroxidase in a Globin Fold

Green, A.P.; Hilvert, D.

J. Am. Chem. Soc. 2018, 140, 1535-1543, 10.1021/jacs.7b12621

Expanding the range of genetically encoded metal coordination environments accessible within tunable protein scaffolds presents excellent opportunities for the creation of metalloenzymes with augmented properties and novel activities. Here, we demonstrate that installation of a noncanonical Nδ-methyl histidine (NMH) as the proximal heme ligand in the oxygen binding protein myoglobin (Mb) leads to substantial increases in heme redox potential and promiscuous peroxidase activity. Structural characterization of this catalytically modified myoglobin variant (Mb NMH) revealed significant changes in the proximal pocket, including alterations to hydrogen-bonding interactions involving the prosthetic porphyrin cofactor. Further optimization of Mb NMH via a combination of rational modification and several rounds of laboratory evolution afforded efficient peroxidase biocatalysts within a globin fold, with activities comparable to those displayed by nature’s peroxidases.


Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Oxidation
Max TON: ~1650
ee: ---
PDB: 5OJ9
Notes: Oxidation of amplex red

Capture and Characterization of a Reactive Haem– Carbenoid Complex in an Artificial Metalloenzyme

Hilvert, D.

Nat. Catal. 2018, 1, 578-584, 10.1038/s41929-018-0105-6

Non-canonical amino acid ligands are useful for fine-tuning the catalytic properties of metalloenzymes. Here, we show that recombinant replacement of the histidine ligand proximal to haem in myoglobin with Nδ-methylhistidine enhances the protein’s promiscuous carbene-transfer chemistry, enabling efficient styrene cyclopropanation in the absence of reductant, even under aerobic conditions. The increased electrophilicity of the modified Fe(iii) centre, combined with subtle structural adjustments at the active site, allows direct attack of ethyl diazoacetate to produce a reactive carbenoid adduct, which has an unusual bridging Fe(iii)–C–N(pyrrole) configuration as shown by X-ray crystallography. Quantum chemical calculations suggest that the bridged complex equilibrates with the more reactive end-on isomer, ensuring efficient cyclopropanation. These findings underscore the potential of non-canonical ligands for extending the capabilities of metalloenzymes by opening up new reaction pathways and facilitating the characterization of reactive species that would not otherwise accumulate.


Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: ---
Optimization: Genetic
Reaction: Cyclopropanation
Max TON: 1000
ee: 99
PDB: 6F17
Notes: Structure of the Mb*(NMH) haem-iron complex

Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: ---
Optimization: Genetic
Reaction: Cyclopropanation
Max TON: 1000
ee: 99
PDB: 6G5B
Notes: Structure of the Mb*(NMH) haem-iron–carbenoid complex

DNA‐Based Asymmetric Inverse Electron‐Demand Hetero‐Diels–Alder

Arseniyadis, S.; Campagne, J.; Smietana, M.

Chem. Eur. J. 2020, 26, 3519-3523, 10.1002/chem.202000516

While artificial cyclases hold great promise in chemical synthesis, this work presents the first example of a DNA-catalyzed inverse electron-demand hetero-Diels–Alder (IEDHDA) between dihydrofuran and various α,β-unsaturated acyl imidazoles. The resulting fused bicyclic O,O-acetals containing three contiguous stereogenic centers are obtained in high yields (up to 99 %) and excellent diastereo- (up to >99:1 dr) and enantioselectivities (up to 95 % ee) using a low catalyst loading. Most importantly, these results show that the concept of DNA-based asymmetric catalysis can be expanded to new synthetic transformations offering an efficient, sustainable, and highly selective tool for the construction of chiral building blocks.


Metal: Cu
Ligand type: Cu(dmbipy)(NO3)2
Host protein: DNA
Anchoring strategy: Supramolecular
Optimization: Chemical
Max TON: 3.33
ee: 95
PDB: ---
Notes: ---

Efficient Lewis Acid Catalysis of an Abiological Reaction in a De Novo Protein Scaffold

Hilvert, D.; Jiménez-Osés, G.

Nat. Chem. 2021, 13, 231-235, 10.1038/s41557-020-00628-4

New enzyme catalysts are usually engineered by repurposing the active sites of natural proteins. Here we show that design and directed evolution can be used to transform a non-natural, functionally naive zinc-binding protein into a highly active catalyst for an abiological hetero-Diels–Alder reaction. The artificial metalloenzyme achieves >104 turnovers per active site, exerts absolute control over reaction pathway and product stereochemistry, and displays a catalytic proficiency (1/KTS = 2.9 × 1010 M−1) that exceeds all previously characterized Diels–Alderases. These properties capitalize on effective Lewis acid catalysis, a chemical strategy for accelerating Diels–Alder reactions common in the laboratory but so far unknown in nature. Extension of this approach to other metal ions and other de novo scaffolds may propel the design field in exciting new directions.


Metal: Zn
Ligand type: Amino acid
Host protein: De novo-designed protein
Anchoring strategy: Dative
Optimization: Genetic
Max TON: >10000
ee: 99
PDB: ---
Notes: PDB: 3V1C, 7BWW

Engineered Metalloenzymes with Non-Canonical Coordination Environments

Review

Green, A.P.; Hilvert, D.

Chem. - Eur. J. 2018, 24, 11821-11830, 10.1002/chem.201800975

Nature employs a limited number of genetically encoded, metal‐coordinating residues to create metalloenzymes with diverse structures and functions. Engineered components of the cellular translation machinery can now be exploited to encode non‐canonical ligands with user‐defined electronic and structural properties. This ability to install “chemically programmed” ligands into proteins can provide powerful chemical probes of metalloenzyme mechanism and presents excellent opportunities to create metalloprotein catalysts with augmented properties and novel activities. In this Concept article, we provide an overview of several recent studies describing the creation of engineered metalloenzymes with interesting catalytic properties, and reveal how characterization of these systems has advanced our understanding of nature's bioinorganic mechanisms. We also highlight how powerful laboratory evolution protocols can be readily adapted to allow optimization of metalloenzymes with non‐canonical ligands. This approach combines beneficial features of small molecule and protein catalysis by allowing the installation of a greater variety of local metal coordination environments into evolvable protein scaffolds, and holds great promise for the future creation of powerful metalloprotein catalysts for a host of synthetically valuable transformations.


Notes: ---

Noncanonical Heme Ligands Steer Carbene Transfer Reactivity in an Artificial Metalloenzyme

Hilvert, D.

Angew. Chem. Int. Ed. 2021, 60, 15063-15068, 10.1002/anie.202103437

Changing the primary metal coordination sphere is a powerful strategy for tuning metalloprotein properties. Here we used amber stop codon suppression with engineered pyrrolysyl-tRNA synthetases, including two newly evolved enzymes, to replace the proximal histidine in myoglobin with Nδ-methylhistidine, 5-thiazoylalanine, 4-thiazoylalanine and 3-(3-thienyl)alanine. In addition to tuning the heme redox potential over a >200 mV range, these noncanonical ligands modulate the protein's carbene transfer activity with ethyl diazoacetate. Variants with increased reduction potential proved superior for cyclopropanation and N–H insertion, whereas variants with reduced Eo values gave higher S–H insertion activity. Given the functional importance of histidine in many enzymes, these genetically encoded analogues could be valuable tools for probing mechanism and enabling new chemistries.


Metal: Fe
Ligand type: Histidine residues
Host protein: Myoglobin (Mb)
Anchoring strategy: Heme
Optimization: Genetic
Reaction: Cyclopropanation
Max TON: ---
ee: >99
PDB: ---
Notes: yield: styrene cyclopropanation 71% max, cf free heme <5%

Metal: Fe
Ligand type: Histidine residues
Host protein: Myoglobin (Mb)
Anchoring strategy: Heme
Optimization: Genetic
Reaction: N-H Insertion
Max TON: ---
ee: ---
PDB: ---
Notes: Yield: aniline insertion 74-93%

Metal: Fe
Ligand type: Histidine residues
Host protein: Myoglobin (Mb)
Anchoring strategy: Heme
Optimization: Genetic
Reaction: S-H insertion
Max TON: ---
ee: ---
PDB: ---
Notes: Yield: thiophenol insertion 18-36% but still outperforms heme