3 publications

3 publications

A Hybrid Ring- Opening Metathesis Polymerization Catalyst Based on an Engineered Variant of the Beta-Barrel Protein FhuA

Okuda, J.; Schwaneberg, U.

Chem. - Eur. J. 2013, 19, 13865-13871, 10.1002/chem.201301515

A β‐barrel protein hybrid catalyst was prepared by covalently anchoring a Grubbs–Hoveyda type olefin metathesis catalyst at a single accessible cysteine amino acid in the barrel interior of a variant of β‐barrel transmembrane protein ferric hydroxamate uptake protein component A (FhuA). Activity of this hybrid catalyst type was demonstrated by ring‐opening metathesis polymerization of a 7‐oxanorbornene derivative in aqueous solution.

Metal: Ru
Ligand type: Carbene
Host protein: FhuA ΔCVFtev
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 955
ee: ---
PDB: ---
Notes: ROMP

A Whole Cell E. coli Display Platform for Artificial Metalloenzymes: Poly(phenylacetylene) Production with a Rhodium–Nitrobindin Metalloprotein

Schwaneberg, U.

ACS Catal. 2018, 8, 2611-2614, 10.1021/acscatal.7b04369

Whole cell catalysis is, in many cases, a prerequisite for the cost-effective production of chemicals by biotechnological means. Synthetic metal catalysts for bioorthogonal reactions can be inactivated within cells due to abundant thiol derivatives. Here, a cell surface display-based whole cell biohybrid catalyst system (termed ArMt bugs) is reported as a generally applicable platform to unify cost-effective whole cell catalysis with biohybrid catalysis. An inactivated esterase autotransporter is employed to display the nitrobindin protein scaffold with a Rh catalyst on the E. coli surface. Stereoselective polymerization of phenylacetylene yielded a high turnover number (TON) (39 × 106 cell–1) for the ArMt bugs conversion platform.

Metal: Rh
Ligand type: COD; Cp
Host protein: Nitrobindin variant NB4
Anchoring strategy: Cystein-maleimide
Optimization: ---
Max TON: 3046
ee: ---
PDB: ---
Notes: Calculated in vivo TON assuming 12800 metalloenzymes per E. coli cell

Towards Evolution of Artificial Metalloenzymes - A Protein Engineer’s Perspective


Schwaneberg, U.

Angew. Chem. Int. Ed. 2019, 58, 4454-4464, 10.1002/anie.201811042

Incorporating artificial metal‐cofactors into protein scaffolds results in a new class of catalysts, termed biohybrid catalysts or artificial metalloenzymes. Biohybrid catalysts can be modified chemically at the first coordination sphere of the metal complex, as well as at the second coordination sphere provided by the protein scaffold. Protein‐scaffold reengineering by directed evolution exploits the full power of nature's diversity, but requires validated screening and sophisticated metal cofactor conjugation to evolve biohybrid catalysts. In this Minireview, we summarize the recent efforts in this field to establish high‐throughput screening methods for biohybrid catalysts and we show how non‐chiral catalysts catalyze reactions enantioselectively by highlighting the first successes in this emerging field. Furthermore, we shed light on the potential of this field and challenges that need to be overcome to advance from biohybrid catalysts to true artificial metalloenzymes.

Notes: ---