2 publications
-
Efficient Lewis Acid Catalysis of an Abiological Reaction in a De Novo Protein Scaffold
-
Nat. Chem. 2021, 13, 231-235, 10.1038/s41557-020-00628-4
New enzyme catalysts are usually engineered by repurposing the active sites of natural proteins. Here we show that design and directed evolution can be used to transform a non-natural, functionally naive zinc-binding protein into a highly active catalyst for an abiological hetero-Diels–Alder reaction. The artificial metalloenzyme achieves >104 turnovers per active site, exerts absolute control over reaction pathway and product stereochemistry, and displays a catalytic proficiency (1/KTS = 2.9 × 1010 M−1) that exceeds all previously characterized Diels–Alderases. These properties capitalize on effective Lewis acid catalysis, a chemical strategy for accelerating Diels–Alder reactions common in the laboratory but so far unknown in nature. Extension of this approach to other metal ions and other de novo scaffolds may propel the design field in exciting new directions.
Metal: ZnLigand type: Amino acidHost protein: De novo-designed proteinAnchoring strategy: DativeOptimization: GeneticNotes: PDB: 3V1C, 7BWW
-
Semisynthetic and Biomolecular Hydrogen Evolution Catalysts
-
Inorg. Chem. 2016, 55, 467-477, 10.1021/acs.inorgchem.5b02054
There has been great interest in the development of stable, inexpensive, efficient catalysts capable of reducing aqueous protons to hydrogen (H2), an alternative to fossil fuels. While synthetic H2 evolution catalysts have been in development for decades, recently there has been great progress in engineering biomolecular catalysts and assemblies of synthetic catalysts and biomolecules. In this Forum Article, progress in engineering proteins to catalyze H2 evolution from water is discussed. The artificial enzymes described include assemblies of synthetic catalysts and photosynthetic proteins, proteins with cofactors replaced with synthetic catalysts, and derivatives of electron-transfer proteins. In addition, a new catalyst consisting of a thermophilic cobalt-substituted cytochrome c is reported. As an electrocatalyst, the cobalt cytochrome shows nearly quantitative Faradaic efficiency and excellent longevity with a turnover number of >270000.
Metal: CoLigand type: PorphyrinHost protein: Cytochrome c552Anchoring strategy: Metal substitutionOptimization: GeneticNotes: Electrocatalysis