3 publications

3 publications

Asymmetric Hydrogenation with Antibody-Achiral Rhodium Complex

Harada, A.

Org. Biomol. Chem. 2006, 4, 3571, 10.1039/B609242J

Monoclonal antibodies have been elicited against an achiral rhodium complex and this complex was used in the presence of a resultant antibody, 1G8, for the catalytic hydrogenation of 2-acetamidoacrylic acid to produce N-acetyl-L-alanine in high (>98%) enantiomeric excess.


Metal: Rh
Ligand type: COD; Phosphine
Host protein: Antibody 1G8
Anchoring strategy: Antibody
Optimization: ---
Reaction: Hydrogenation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Design of a Switchable Eliminase

DeGrado, W.F.

Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 6823-6827, 10.1073/pnas.1018191108

The active sites of enzymes are lined with side chains whose dynamic, geometric, and chemical properties have been finely tuned relative to the corresponding residues in water. For example, the carboxylates of glutamate and aspartate are weakly basic in water but become strongly basic when dehydrated in enzymatic sites. The dehydration of the carboxylate, although intrinsically thermodynamically unfavorable, is achieved by harnessing the free energy of folding and substrate binding to reach the required basicity. Allosterically regulated enzymes additionally rely on the free energy of ligand binding to stabilize the protein in a catalytically competent state. We demonstrate the interplay of protein folding energetics and functional group tuning to convert calmodulin (CaM), a regulatory binding protein, into AlleyCat, an allosterically controlled eliminase. Upon binding Ca(II), native CaM opens a hydrophobic pocket on each of its domains. We computationally identified a mutant that (i) accommodates carboxylate as a general base within these pockets, (ii) interacts productively in the Michaelis complex with the substrate, and (iii) stabilizes the transition state for the reaction. Remarkably, a single mutation of an apolar residue at the bottom of an otherwise hydrophobic cavity confers catalytic activity on calmodulin. AlleyCat showed the expected pH-rate profile, and it was inactivated by mutation of its active site Glu to Gln. A variety of control mutants demonstrated the specificity of the design. The activity of this minimal 75-residue allosterically regulated catalyst is similar to that obtained using more elaborate computational approaches to redesign complex enzymes to catalyze the Kemp elimination reaction.


Metal: Ca
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Kemp elimination
Max TON: >40
ee: ---
PDB: 2KZ2
Notes: Ca acts as allosteric regulator, catalytically active site contains no metal

Redox-Switchable Siderophore Anchor Enables Reversible Artificial Metalloenzyme Assembly

Duhme-Klair, A.K.; Wilson, K.S.

Nat. Catal. 2018, 1, 680-688, 10.1038/s41929-018-0124-3

Artificial metalloenzymes that contain protein-anchored synthetic catalysts are attracting increasing interest. An exciting, but still unrealized advantage of non-covalent anchoring is its potential for reversibility and thus component recycling. Here we present a siderophore–protein combination that enables strong but redox-reversible catalyst anchoring, as exemplified by an artificial transfer hydrogenase (ATHase). By linking the iron(iii)-binding siderophore azotochelin to an iridium-containing imine-reduction catalyst that produces racemic product in the absence of the protein CeuE, but a reproducible enantiomeric excess if protein bound, the assembly and reductively triggered disassembly of the ATHase was achieved. The crystal structure of the ATHase identified the residues involved in high-affinity binding and enantioselectivity. While in the presence of iron(iii), the azotochelin-based anchor binds CeuE with high affinity, and the reduction of the coordinated iron(iii) to iron(ii) triggers its dissociation from the protein. Thus, the assembly of the artificial enzyme can be controlled via the iron oxidation state.


Metal: Ir
Ligand type: Cp*; Pyridine sulfonamide
Host protein: CeuE
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: ---
ee: 35.4
PDB: 5OD5
Notes: Redox switchable iron(III)-azotochelin anchor