6 publications
-
A General Method for Artificial Metalloenzyme Formationthrough Strain-Promoted Azide–Alkyne Cycloaddition
-
ChemBioChem 2014, 15, 223-227, 10.1002/cbic.201300661
Strain‐promoted azide–alkyne cycloaddition (SPAAC) can be used to generate artificial metalloenzymes (ArMs) from scaffold proteins containing a p‐azido‐L‐phenylalanine (Az) residue and catalytically active bicyclononyne‐substituted metal complexes. The high efficiency of this reaction allows rapid ArM formation when using Az residues within the scaffold protein in the presence of cysteine residues or various reactive components of cellular lysate. In general, cofactor‐based ArM formation allows the use of any desired metal complex to build unique inorganic protein materials. SPAAC covalent linkage further decouples the native function of the scaffold from the installation process because it is not affected by native amino acid residues; as long as an Az residue can be incorporated, an ArM can be generated. We have demonstrated the scope of this method with respect to both the scaffold and cofactor components and established that the dirhodium ArMs generated can catalyze the decomposition of diazo compounds and both SiH and olefin insertion reactions involving these carbene precursors.
Metal: RhLigand type: Poly-carboxylic acidHost protein: tHisFAnchoring strategy: CovalentOptimization: ---Notes: ---
Metal: RhLigand type: Poly-carboxylic acidHost protein: tHisFAnchoring strategy: CovalentOptimization: ---Notes: ---
-
Engineering a Dirhodium Artificial Metalloenzyme for Selective Olefin Cyclopropanation
-
Nat. Commun. 2015, 6, 10.1038/ncomms8789
Artificial metalloenzymes (ArMs) formed by incorporating synthetic metal catalysts into protein scaffolds have the potential to impart to chemical reactions selectivity that would be difficult to achieve using metal catalysts alone. In this work, we covalently link an alkyne-substituted dirhodium catalyst to a prolyl oligopeptidase containing a genetically encoded L-4-azidophenylalanine residue to create an ArM that catalyses olefin cyclopropanation. Scaffold mutagenesis is then used to improve the enantioselectivity of this reaction, and cyclopropanation of a range of styrenes and donor–acceptor carbene precursors were accepted. The ArM reduces the formation of byproducts, including those resulting from the reaction of dirhodium–carbene intermediates with water. This shows that an ArM can improve the substrate specificity of a catalyst and, for the first time, the water tolerance of a metal-catalysed reaction. Given the diversity of reactions catalysed by dirhodium complexes, we anticipate that dirhodium ArMs will provide many unique opportunities for selective catalysis.
Metal: RhLigand type: Poly-carboxylic acidHost protein: Prolyl oligopeptidase (POP)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: ---
-
Engineering Dirhodium Artificial Metalloenzymes for Diazo Coupling Cascade Reactions
-
Angew. Chem. Int. Ed. 2021, 60, 23672-23677, 10.1002/anie.202107982
Artificial metalloenzymes (ArMs) are commonly used to control the stereoselectivity of catalytic reactions, but controlling chemoselectivity remains challenging. In this study, we engineer a dirhodium ArM to catalyze diazo cross-coupling to form an alkene that, in a one-pot cascade reaction, is reduced to an alkane with high enantioselectivity (typically >99 % ee) by an alkene reductase. The numerous protein and small molecule components required for the cascade reaction had minimal effect on ArM catalysis. Directed evolution of the ArM led to improved yields and E/Z selectivities for a variety of substrates, which translated to cascade reaction yields. MD simulations of ArM variants were used to understand the structural role of the cofactor on ArM conformational dynamics. These results highlight the ability of ArMs to control both catalyst stereoselectivity and chemoselectivity to enable reactions in complex media that would otherwise lead to undesired side reactions.
Metal: RhLigand type: DirhodiumHost protein: Prolyl oligopeptidase (POP)Anchoring strategy: CovalentOptimization: ---Notes: 61% max combined yield for cascade reactions
-
Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology
-
ChemCatChem 2014, 6, 1010-1014, 10.1002/cctc.201300825
We report on the optimization of an artificial imine reductase based on the biotin‐streptavidin technology. With the aim of rapidly generating chemical diversity, a novel strategy for the formation and evaluation of biotinylated complexes is disclosed. Tethering the biotin‐anchor to the Cp* moiety leaves three free coordination sites on a d6 metal for the introduction of chemical diversity by coordination of a variety of ligands. To test the concept, 34 bidentate ligands were screened and a selection of the 6 best was tested in the presence of 21 streptavidin (Sav) isoforms for the asymmetric imine reduction by the resulting three legged piano stool complexes. Enantiopure α‐amino amides were identified as promising bidentate ligands: up to 63 % ee and 190 turnovers were obtained in the formation of 1‐phenyl‐1,2,3,4‐tetrahydroisoquinoline with [IrCp*biotin(L‐ThrNH2)Cl]⊂SavWT as a catalyst.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrLigand type: Cp*Host protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhLigand type: Cp*Host protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design
-
J. Am. Chem. Soc. 2015, 137, 10414-10419, 10.1021/jacs.5b06622
Artifical metalloenzymes combine the reactivity of small molecule catalysts with the selectivity of enzymes, and new methods are required to tune the catalytic properties of these systems for an application of interest. Structure-based computational design could help to identify amino acid mutations leading to improved catalytic activity and enantioselectivity. Here we describe the application of Rosetta Design for the genetic optimization of an artificial transfer hydrogenase (ATHase hereafter), [(η5-Cp*)Ir(pico)Cl] ⊂ WT hCA II (Cp* = Me5C5–), for the asymmetric reduction of a cyclic imine, the precursor of salsolsidine. Based on a crystal structure of the ATHase, computational design afforded four hCAII variants with protein backbone-stabilizing and hydrophobic cofactor-embedding mutations. In dansylamide-competition assays, these designs showed 46–64-fold improved affinity for the iridium pianostool complex [(η5-Cp*)Ir(pico)Cl]. Gratifyingly, the new designs yielded a significant improvement in both activity and enantioselectivity (from 70% ee (WT hCA II) to up to 92% ee and a 4-fold increase in total turnover number) for the production of (S)-salsolidine. Introducing additional hydrophobicity in the Cp*-moiety of the Ir-catalyst provided by adding a propyl substituent on the Cp* moiety yields the most (S)-selective (96% ee) ATHase reported to date. X-ray structural data indicate that the high enantioselectivity results from embedding the piano stool moiety within the protein, consistent with the computational model.
Metal: IrHost protein: Human carbonic anhydrase II (hCAII)Anchoring strategy: SupramolecularOptimization: GeneticNotes: ---
-
Redox-Switchable Siderophore Anchor Enables Reversible Artificial Metalloenzyme Assembly
-
Nat. Catal. 2018, 1, 680-688, 10.1038/s41929-018-0124-3
Artificial metalloenzymes that contain protein-anchored synthetic catalysts are attracting increasing interest. An exciting, but still unrealized advantage of non-covalent anchoring is its potential for reversibility and thus component recycling. Here we present a siderophore–protein combination that enables strong but redox-reversible catalyst anchoring, as exemplified by an artificial transfer hydrogenase (ATHase). By linking the iron(iii)-binding siderophore azotochelin to an iridium-containing imine-reduction catalyst that produces racemic product in the absence of the protein CeuE, but a reproducible enantiomeric excess if protein bound, the assembly and reductively triggered disassembly of the ATHase was achieved. The crystal structure of the ATHase identified the residues involved in high-affinity binding and enantioselectivity. While in the presence of iron(iii), the azotochelin-based anchor binds CeuE with high affinity, and the reduction of the coordinated iron(iii) to iron(ii) triggers its dissociation from the protein. Thus, the assembly of the artificial enzyme can be controlled via the iron oxidation state.
Notes: Redox switchable iron(III)-azotochelin anchor