Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

50 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. clearJ. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme

Terminal oxidases catalyze four-electron reduction of oxygen to water, and the energy harvested is utilized to drive the synthesis of adenosine triphosphate. While much effort has been made to design a catalyst mimicking the function of terminal oxidases, most biomimetic catalysts have much lower activity than native oxidases. Herein we report a designed oxidase in myoglobin with an O2 reduction rate (52 s–1) comparable to that of a native cytochrome (cyt) cbb3 oxidase (50 s–1) under identical conditions. We achieved this goal by engineering more favorable electrostatic interactions between a functional oxidase model designed in sperm whale myoglobin and its native redox partner, cyt b5, resulting in a 400-fold electron transfer (ET) rate enhancement. Achieving high activity equivalent to that of native enzymes in a designed metalloenzyme offers deeper insight into the roles of tunable processes such as ET in oxidase activity and enzymatic function and may extend into applications such as more efficient oxygen reduction reaction catalysts for biofuel cells.

Metal:

Cu

Ligand type:

Amino acid

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Dative

Optimization:

Genetic

Reaction:

O2 reduction

Max TON:

---

ee:

---

PDB:

---

Notes:

O2 reduction rates of 52 s-1 were achieved in combination with the native redox partner cyt b5.

A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology

Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

14

ee:

11

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

100

ee:

79

PDB:

---

Notes:

---

A Highly Specific Metal-Activated Catalytic Antibody

n/a

Metal:

Zn

Ligand type:

Undefined

Host protein:

IgG 84A3

Anchoring strategy:

Undefined

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

Substrate specificty

Albumin-Conjugated Corrole Metal Complexes: Extremely Simple Yet Very Efficient Biomimetic Oxidation Systems

An extremely simple biomimetic oxidation system, consisting of mixing metal complexes of amphiphilic corroles with serum albumins, utilizes hydrogen peroxide for asymmetric sulfoxidation in up to 74% ee. The albumin-conjugated manganese corroles also display catalase-like activity, and mechanistic evidence points toward oxidant-coordinated manganese(III) as the prime reaction intermediate.

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

8

ee:

74

PDB:

---

Notes:

---

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

42

ee:

52

PDB:

---

Notes:

---

An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades

Metal:

Ir

Ligand type:

Cp*; Phenanthroline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

>999

ee:

>99

PDB:

---

Notes:

---

A Noncanonical Proximal Heme Ligand Affords an Efficient Peroxidase in a Globin Fold

Metal:

Fe

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Oxidation

Max TON:

~1650

ee:

---

PDB:

5OJ9

Notes:

Oxidation of amplex red

Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes

Metal:

Ru

Ligand type:

Porphyrin

Host protein:

Antibody SN37.4

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

750

ee:

43

PDB:

---

Notes:

---

Artificial Metalloenzyme for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin

Metal:

V

Ligand type:

Water

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Sulfoxidation

Max TON:

27

ee:

93

PDB:

---

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis Based on Biotin-Avidin

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

96

PDB:

---

Notes:

---

Artificial Metalloenzymes: (Strept)avidin as Host for Enantioselective Hydrogenation by Achiral Biotinylated Rhodium-Diphosphine Complexes

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

---

Artificial Metalloproteins Containing Co4O4 Cubane Active Sites

Metal:

Co

Ligand type:

OAc; Pyridine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

6AUC

Notes:

Co-complex in Sav WT

Metal:

Co

Ligand type:

OAc; Pyridine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

6AUC

Notes:

Co-complex in Sav S112Y

Artificial Transfer Hydrogenases Based on the Biotin-(Strept)avidin Technology: Fine Tuning the Selectivity by Saturation Mutagenesis of the Host Protein

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

96

ee:

80

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

73

ee:

60

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

95

ee:

70

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

79

ee:

97

PDB:

---

Notes:

---

A Semisynthetic Metalloenzyme based on a Protein Cavity that Catalyzes the Enantioselective Hydrolysis of Ester and Amide Substrates

In an effort to prepare selective and efficient catalysts for ester and amide hydrolysis, we are designing systems that position a coordinated metal ion within a defined protein cavity. Here, the preparation of a protein-1,10-phenanthroline conjugate and the hydrolytic chemistry catalyzed by this construct are described. Iodoacetamido-1,10-phenanthroline was used to modify a unique cysteine residue in ALBP (adipocyte lipid binding protein) to produce the conjugate ALBP-Phen. The resulting material was characterized by electrospray mass spectrometry, UV/vis and fluorescence spectroscopy, gel filtration chromatography, and thiol titration. The stability of ALBP-Phen was evaluated by guanidine hydrochloride denaturation experiments, and the ability of the conjugate to bind Cu(II) was demonstrated by fluorescence spectroscopy. ALBP-Phen-Cu(II) catalyzes the enantioselective hydrolysis of several unactivated amino acid esters under mild conditions (pH 6.1, 25 °C) at rates 32−280-fold above the background rate in buffered aqueous solution. In 24 h incubations 0.70 to 7.6 turnovers were observed with enantiomeric excesses ranging from 31% ee to 86% ee. ALBP-Phen-Cu(II) also promotes the hydrolysis of an aryl amide substrate under more vigorous conditions (pH 6.1, 37 °C) at a rate 1.6 × 104-fold above the background rate. The kinetics of this amide hydrolysis reaction fit the Michaelis−Menten relationship characteristic of enzymatic processes. The rate enhancements for ester and amide hydrolysis reported here are 102−103 lower than those observed for free Cu(II) but comparable to those previously reported for Cu(II) complexes.

Metal:

Cu

Ligand type:

Phenanthroline

Anchoring strategy:

Covalent

Optimization:

---

Max TON:

1 to 8

ee:

39 to 86

PDB:

---

Notes:

---

A Site-Selective Dual Anchoring Strategy for Artificial Metalloprotein Design

Introducing nonnative metal ions or metal-containing prosthetic groups into a protein can dramatically expand the repertoire of its functionalities and thus its range of applications. Particularly challenging is the control of substrate-binding and thus reaction selectivity such as enantioselectivity. To meet this challenge, both non-covalent and single-point attachments of metal complexes have been demonstrated previously. Since the protein template did not evolve to bind artificial metal complexes tightly in a single conformation, efforts to restrict conformational freedom by modifying the metal complexes and/or the protein are required to achieve high enantioselectivity using the above two strategies. Here we report a novel site-selective dual anchoring (two-point covalent attachment) strategy to introduce an achiral manganese salen complex (Mn(salen)), into apo sperm whale myoglobin (Mb) with bioconjugation yield close to 100%. The enantioselective excess increases from 0.3% for non-covalent, to 12.3% for single point, and to 51.3% for dual anchoring attachments. The dual anchoring method has the advantage of restricting the conformational freedom of the metal complex in the protein and can be generally applied to protein incorporation of other metal complexes with minimal structural modification to either the metal complex or the protein.

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Covalent

Optimization:

Genetic

Reaction:

Sulfoxidation

Max TON:

3.9

ee:

51

PDB:

1MBO

Notes:

Sperm whale myoglobin

Asymmetric δ-Lactam Synthesis with a Monomeric Streptavidin Artificial Metalloenzyme

Metal:

Rh

Ligand type:

Cp*; OAc

Host protein:

Streptavidin (monmeric)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Lactam synthesis

Max TON:

33

ee:

97

PDB:

---

Notes:

---

A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase

Metal:

Os

Ligand type:

Amino acid

Host protein:

TM1459 cupin

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

Dihydroxylation

Max TON:

45

ee:

---

PDB:

5WSE

Notes:

Exclusively cis dihydroxylation product obtained

Metal:

Os

Ligand type:

Amino acid

Host protein:

TM1459 cupin

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

Dihydroxylation

Max TON:

45

ee:

---

PDB:

5WSE

Notes:

Exclusively cis dihydroxylation product obtained

Biosynthesis of a Site-Specific DNA Cleaving Protein

Metal:

Cu

Ligand type:

Bipyridine

Anchoring strategy:

---

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

Catabolite activator protein from E. coli

Metal:

Fe

Ligand type:

Bipyridine

Anchoring strategy:

---

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

Catabolite activator protein from E. coli

Catalytic Cyclopropanation by Myoglobin Reconstituted with Iron Porphycene: Acceleration of Catalysis due to Rapid Formation of the Carbene Species

Metal:

Fe

Ligand type:

Amino acid; Porphycene

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

---

Reaction:

Cyclopropanation

Max TON:

---

ee:

---

PDB:

---

Notes:

Cyclopropanation of styrene with ethyl diazoacetate: kcat/KM = 1.3 mM-1 * s-1, trans/cis = 99:1

Catalytic Reduction of NO to N2O by a Designed Heme Copper Center in Myoglobin: Implications for the Role of Metal Ions

Metal:

Cu

Ligand type:

Amino acid; Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Dative

Optimization:

Genetic

Max TON:

2400

ee:

---

PDB:

---

Notes:

Sperm whale myoglobin

Chemoselective, Enzymatic C−H Bond Amination Catalyzed by a Cytochrome P450 Containing an Ir(Me)-PIX Cofactor

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome P450 (CYP119)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

294

ee:

26

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome P450 (CYP119)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

192

ee:

95

PDB:

---

Notes:

---

Control of the Coordination Structure of Organometallic Palladium Complexes in an Apo-Ferritin Cage

Metal:

Pd

Ligand type:

Allyl

Host protein:

Ferritin

Anchoring strategy:

Dative

Optimization:

---

Reaction:

Suzuki coupling

Max TON:

---

ee:

---

PDB:

2ZG7

Notes:

---

Conversion of a Protein to a Homogeneous Asymmetric Hydrogenation Catalyst by Site-Specific Modification with a Diphosphinerhodium (I) Moiety

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Hydrogenation

Max TON:

500

ee:

41

PDB:

---

Notes:

---

Coordinated Design of Cofactor and Active Site Structures in Development of New Protein Catalysts

Metal:

Mn

Ligand type:

Salophen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

1V9Q

Notes:

---

Metal:

Cr

Ligand type:

Salophen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

1V9Q

Notes:

---

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Metal:

Cr

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Cross-Linked Artificial Enzyme Crystals as Heterogeneous Catalysts for Oxidation Reactions

Metal:

Fe

Ligand type:

---

Host protein:

NikA

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Max TON:

28000

ee:

---

PDB:

5ON0

Notes:

Cross-Linked Enzyme Crystals (CLEC) as catalysts.

Metal:

Fe

Ligand type:

---

Host protein:

NikA

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Max TON:

5900

ee:

---

PDB:

5ON0

Notes:

Cross-Linked Enzyme Crystals (CLEC) as catalysts.

C(sp3)–H Bond Hydroxylation Catalyzed by Myoglobin Reconstituted with Manganese Porphycene

Metal:

Mn

Ligand type:

Porphycene

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

---

Reaction:

Hydroxylation

Max TON:

---

ee:

---

PDB:

2WI8

Notes:

---

Defining the Role of Tyrosine and Rational Tuning of Oxidase Activity by Genetic Incorporation of Unnatural Tyrosine Analogs

Metal:

Cu

Ligand type:

Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

1200

ee:

---

PDB:

4FWX

Notes:

Sperm whale myoglobin

Flavohemoglobin: A Semisynthetic Hydroxylase Acting in the Absence of Reductase

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Hemoglobin

Anchoring strategy:

---

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

1000

ee:

76

PDB:

6GMI

Notes:

---

Going Beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases

Metal:

Ni

Ligand type:

Amino acid

Host protein:

Rubredoxin (Rd)

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

H2 evolution

Max TON:

---

ee:

---

PDB:

---

Notes:

TOF = 149 s-1

Helichrome: Synthesis and Enzymatic Activity of a Designed Hemeprotein

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Artificial construct

Anchoring strategy:

Covalent

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

Only 60 amino acids