19 publications

19 publications

Artificial Metalloenzymes Based on the Biotin-Avidin Technology: Enantioselective Catalysis and Beyond

Review

Ward, T.R.

Acc. Chem. Res. 2011, 44, 47-57, 10.1021/ar100099u

Artificial metalloenzymes are created by incorporating an organometallic catalyst within a host protein. The resulting hybrid can thus provide access to the best features of two distinct, and often complementary, systems: homogeneous and enzymatic catalysts. The coenzyme may be positioned with covalent, dative, or supramolecular anchoring strategies. Although initial reports date to the late 1970s, artificial metalloenzymes for enantioselective catalysis have gained significant momentum only in the past decade, with the aim of complementing homogeneous, enzymatic, heterogeneous, and organic catalysts. Inspired by a visionary report by Wilson and Whitesides in 1978, we have exploited the potential of biotin−avidin technology in creating artificial metalloenzymes. Owing to the remarkable affinity of biotin for either avidin or streptavidin, covalent linking of a biotin anchor to a catalyst precursor ensures that, upon stoichiometric addition of (strept)avidin, the metal moiety is quantitatively incorporated within the host protein. In this Account, we review our progress in preparing and optimizing these artificial metalloenzymes, beginning with catalytic hydrogenation as a model and expanding from there. These artificial metalloenzymes can be optimized by both chemical (variation of the biotin−spacer−ligand moiety) and genetic (mutation of avidin or streptavidin) means. Such chemogenetic optimization schemes were applied to various enantioselective transformations. The reactions implemented thus far include the following: (i) The rhodium-diphosphine catalyzed hydrogenation of N-protected dehydroaminoacids (ee up to 95%); (ii) the palladium-diphosphine catalyzed allylic alkylation of 1,3-diphenylallylacetate (ee up to 95%); (iii) the ruthenium pianostool-catalyzed transfer hydrogenation of prochiral ketones (ee up to 97% for aryl-alkyl ketones and ee up to 90% for dialkyl ketones); (iv) the vanadyl-catalyzed oxidation of prochiral sulfides (ee up to 93%). A number of noteworthy features are reminiscent of homogeneous catalysis, including straightforward access to both enantiomers of the product, the broad substrate scope, organic solvent tolerance, and an accessible range of reactions that are typical of homogeneous catalysts. Enzyme-like features include access to genetic optimization, an aqueous medium as the preferred solvent, Michaelis−Menten behavior, and single-substrate derivatization. The X-ray characterization of artificial metalloenzymes provides fascinating insight into possible enantioselection mechanisms involving a well-defined second coordination sphere environment. Thus, such artificial metalloenzymes combine attractive features of both homogeneous and enzymatic kingdoms. In the spirit of surface borrowing, that is, modulating ligand affinity by harnessing existing protein surfaces, this strategy can be extended to selectively binding streptavidin-incorporated biotinylated ruthenium pianostool complexes to telomeric DNA. This application paves the way for chemical biology applications of artificial metalloenzymes.


Notes: ---

Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities

Review

Ward, T.R.

Acc. Chem. Res. 2016, 49, 1711-1721, 10.1021/acs.accounts.6b00235

The biotin–streptavidin technology offers an attractive means to engineer artificial metalloenzymes (ArMs). Initiated over 50 years ago by Bayer and Wilchek, the biotin–(strept)avidin techonology relies on the exquisite supramolecular affinity of either avidin or streptavidin for biotin. This versatile tool, commonly referred to as “molecular velcro”, allows nearly irreversible anchoring of biotinylated probes within a (strept)avidin host protein. Building upon a visionary publication by Whitesides from 1978, several groups have been exploiting this technology to create artificial metalloenzymes. For this purpose, a biotinylated organometallic catalyst is introduced within (strept)avidin to afford a hybrid catalyst that combines features reminiscent of both enzymes and organometallic catalysts. Importantly, ArMs can be optimized by chemogenetic means. Combining a small collection of biotinylated organometallic catalysts with streptavidin mutants allows generation of significant diversity, thus allowing optimization of the catalytic performance of ArMs. Pursuing this strategy, the following reactions have been implemented: hydrogenation, alcohol oxidation, sulfoxidation, dihydroxylation, allylic alkylation, transfer hydrogenation, Suzuki cross-coupling, C–H activation, and metathesis. In this Account, we summarize our efforts in the latter four reactions. X-ray analysis of various ArMs based on the biotin–streptavidin technology reveals the versatility and commensurability of the biotin-binding vestibule to accommodate and interact with transition states of the scrutinized organometallic transformations. In particular, streptavidin residues at positions 112 and 121 recurrently lie in close proximity to the biotinylated metal cofactor. This observation led us to develop a streamlined 24-well plate streptavidin production and screening platform to optimize the performance of ArMs. To date, most of the efforts in the field of ArMs have focused on the use of purified protein samples. This seriously limits the throughput of the optimization process. With the ultimate goal of complementing natural enzymes in the context of synthetic and chemical biology, we outline the milestones required to ultimately implement ArMs within a cellular environment. Indeed, we believe that ArMs may allow signficant expansion of the natural enzymes’ toolbox to access new-to-nature reactivities in vivo. With this ambitious goal in mind, we report on our efforts to (i) activate the biotinylated catalyst precursor upon incorporation within streptavidin, (ii) minimize the effect of the cellular environment on the ArM’s performance, and (iii) demonstrate the compatibility of ArMs with natural enzymes in cascade reactions.


Notes: ---

Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution

Review

Ward, T.R.

Acc. Chem. Res. 2019, 52, 585-595, 10.1021/acs.accounts.8b00618

Artificial metalloenzymes (ArMs) result from anchoring a metal-containing moiety within a macromolecular scaffold (protein or oligonucleotide). The resulting hybrid catalyst combines attractive features of both homogeneous catalysts and enzymes. This strategy includes the possibility of optimizing the reaction by both chemical (catalyst design) and genetic means leading to achievement of a novel degree of (enantio)selectivity, broadening of the substrate scope, or increased activity, among others. In the past 20 years, the Ward group has exploited, among others, the biotin–(strept)avidin technology to localize a catalytic moiety within a well-defined protein environment. Streptavidin has proven versatile for the implementation of ArMs as it offers the following features: (i) it is an extremely robust protein scaffold, amenable to extensive genetic manipulation and mishandling, (ii) it can be expressed in E. coli to very high titers (up to >8 g·L–1 in fed-batch cultures), and (iii) the cavity surrounding the biotinylated cofactor is commensurate with the size of a typical metal-catalyzed transition state. Relying on a chemogenetic optimization strategy, varying the orientation and the nature of the biotinylated cofactor within genetically engineered streptavidin, 12 reactions have been reported by the Ward group thus far. Recent efforts within our group have focused on extending the ArM technology to create complex systems for integration into biological cascade reactions and in vivo. With the long-term goal of complementing in vivo natural enzymes with ArMs, we summarize herein three complementary research lines: (i) With the aim of mimicking complex cross-regulation mechanisms prevalent in metabolism, we have engineered enzyme cascades, including cross-regulated reactions, that rely on ArMs. These efforts highlight the remarkable (bio)compatibility and complementarity of ArMs with natural enzymes. (ii) Additionally, multiple-turnover catalysis in the cytoplasm of aerobic organisms was achieved with ArMs that are compatible with a glutathione-rich environment. This feat is demonstrated in HEK-293T cells that are engineered with a gene switch that is upregulated by an ArM equipped with a cell-penetrating module. (iii) Finally, ArMs offer the fascinating prospect of “endowing organometallic chemistry with a genetic memory.” With this goal in mind, we have identified E. coli’s periplasmic space and surface display to compartmentalize an ArM, while maintaining the critical phenotype–genotype linkage. This strategy offers a straightforward means to optimize by directed evolution the catalytic performance of ArMs. Five reactions have been optimized following these compartmentalization strategies: ruthenium-catalyzed olefin metathesis, ruthenium-catalyzed deallylation, iridium-catalyzed transfer hydrogenation, dirhodium-catalyzed cyclopropanation and carbene insertion in C–H bonds. Importantly, >100 turnovers were achieved with ArMs in E. coli whole cells, highlighting the multiple turnover catalytic nature of these systems.


Notes: ---

Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis

Review

Lewis, J.C.

Acc. Chem. Res. 2019, 52, 576-584, 10.1021/acs.accounts.8b00625

Transition metal catalysis is a powerful tool for chemical synthesis, a standard by which understanding of elementary chemical processes can be measured, and a source of awe for those who simply appreciate the difficulty of cleaving and forming chemical bonds. Each of these statements is amplified in cases where the transition metal catalyst controls the selectivity of a chemical reaction. Enantioselective catalysis is a challenging but well-established phenomenon, and regio- or site-selective catalysis is increasingly common. On the other hand, transition-metal-catalyzed reactions are typically conducted under highly optimized conditions. Rigorous exclusion of air and water is common, and it is taken for granted that only a single substrate (of a particular class) will be present in a reaction, a desired site selectivity can be achieved by installing a directing group, and undesired reactivity can be blocked with protecting groups. These are all reasonable synthetic strategies, but they also highlight limits to catalyst control. The utility of transition metal catalysis could be greatly expanded if catalysts possessed the ability to regulate which molecules they encounter and the relative orientation of those molecules. The rapid and widespread adoption of stoichiometric bioorthogonal reactions illustrates the utility of robust reactions that proceed with high selectivity and specificity under mild reaction conditions. Expanding this capability beyond preprogrammed substrate pairs via catalyst control could therefore have an enormous impact on molecular science. Many metalloenzymes exhibit this level of catalyst control, and directed evolution can be used to rapidly improve the catalytic properties of these systems. On the other hand, the range of reactions catalyzed by enzymes is limited relative to that developed by chemists. The possibility of imparting enzyme-like activity, selectivity, and evolvability to reactions catalyzed by synthetic transition metal complexes has inspired the creation of artificial metalloenzymes (ArMs). The increasing levels of catalyst control exhibited by ArMs developed to date suggest that these systems could constitute a powerful platform for bioorthogonal transition metal catalysis and for selective catalysis in general. This Account outlines the development of a new class of ArMs based on a prolyl oligopeptidase (POP) scaffold. Studies conducted on POP ArMs containing a covalently linked dirhodium cofactor have shown that POP can impart enantioselectivity to a range of dirhodium-catalyzed reactions, increase reaction rates, and improve the specificity for reaction of dirhodium carbene intermediates with targeted organic substrates over components of cell lysate, including bulk water. Several design features of these ArMs enabled their evolution via random mutagenesis, which revealed that mutations throughout the POP scaffold, beyond the second sphere of the dirhodium cofactor, were important for ArM activity and selectivity. While it was anticipated that the POP scaffold would be capable of encapsulating and thus controlling the selectivity of bulky cofactors, molecular dynamics studies also suggest that POP conformational dynamics plays a role in its unique efficacy. These advances in scaffold selection, bioconjugation, and evolution form the basis of our ongoing efforts to control transition metal reactivity using protein scaffolds with the goal of enabling unique synthetic capabilities, including bioorthogonal catalysis.


Notes: ---

Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis

Review

Lewis, J.C.

Acc. Chem. Res. 2019, 52, 576-584, 10.1021/acs.accounts.8b00625

Transition metal catalysis is a powerful tool for chemical synthesis, a standard by which understanding of elementary chemical processes can be measured, and a source of awe for those who simply appreciate the difficulty of cleaving and forming chemical bonds. Each of these statements is amplified in cases where the transition metal catalyst controls the selectivity of a chemical reaction. Enantioselective catalysis is a challenging but well-established phenomenon, and regio- or siteselective catalysis is increasingly common. On the other hand, transition-metal-catalyzed reactions are typically conducted under highly optimized conditions. Rigorous exclusion of air and water is common, and it is taken for granted that only a single substrate (of a particular class) will be present in a reaction, a desired site selectivity can be achieved by installing a directing group, and undesired reactivity can be blocked with protecting groups. These are all reasonable synthetic strategies, but they also highlight limits to catalyst control. The utility of transition metal catalysis could be greatly expanded if catalysts possessed the ability to regulate which molecules they encounter and the relative orientation of those molecules. The rapid and widespread adoption of stoichiometric bioorthogonal reactions illustrates the utility of robust reactions that proceed with high selectivity and specificity under mild reaction conditions. Expanding this capability beyond preprogrammed substrate pairs via catalyst control could therefore have an enormous impact on molecular science. Many metalloenzymes exhibit this level of catalyst control, and directed evolution can be used to rapidly improve the catalytic properties of these systems. On the other hand, the range of reactions catalyzed by enzymes is limited relative to that developed by chemists. The possibility of imparting enzyme-like activity, selectivity, and evolvability to reactions catalyzed by synthetic transition metal complexes has inspired the creation of artificial metalloenzymes (ArMs). The increasing levels of catalyst control exhibited by ArMs developed to date suggest that these systems could constitute a powerful platform for bioorthogonal transition metal catalysis and for selective catalysis in general. This Account outlines the development of a new class of ArMs based on a prolyl oligopeptidase (POP) scaffold. Studies conducted on POP ArMs containing a covalently linked dirhodium cofactor have shown that POP can impart enantioselectivity to a range of dirhodium-catalyzed reactions, increase reaction rates, and improve the specificity for reaction of dirhodium carbene intermediates with targeted organic substrates over components of cell lysate, including bulk water. Several design features of these ArMs enabled their evolution via random mutagenesis, which revealed that mutations throughout the POP scaffold, beyond the second sphere of the dirhodium cofactor, were important for ArM activity and selectivity. While it was anticipated that the POP scaffold would be capable of encapsulating and thus controlling the selectivity of bulky cofactors, molecular dynamics studies also suggest that POP conformational dynamics plays a role in its unique efficacy. These advances in scaffold selection, bioconjugation, and evolution form the basis of our ongoing efforts to control transition metal reactivity using protein scaffolds with the goal of enabling unique synthetic capabilities, including bioorthogonal catalysis.


Notes: ---

De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities

DeGrado, W.F.

Acc. Chem. Res. 2019, 10.1021/acs.accounts.8b00674

De novo protein design represents anattractive approach for testing and extending our under-standing of metalloprotein structure and function. Here, we describe our work on the design of DF (Due Ferri or two-ironin Italian), a minimalist model for the active sites of muchlarger and more complex natural diiron and dimanganeseproteins. In nature, diiron and dimanganese proteins protypi-cally bind their ions in 4-Glu, 2-His environments, and theycatalyze diverse reactions, ranging from hydrolysis, to O2-dependent chemistry, to decarbonylation of aldehydes. In the design of DF, the position of each atom including the backbone, the first-shell ligands, the second-shell hydrogen-bonded groups, and the well-packed hydrophobic core was bespoke using precise mathematical equations and chemical principles. The first member of the DF family was designed to be of minimal size and complexity and yet to display the quintessential elements required for binding the dimetal cofactor. After thoroughly characterizing its structural, dynamic, spectroscopic, and functional properties, we added additional complexity in a rational stepwise manner to achieve increasingly sophisticated catalytic functions, ultimately demonstrating substrate-gated four-electron reduction of O2to water. We also briefly describe the extension of these studies to the design of proteins that bind non biological metal cofactors (a synthetic porphyrin and a tetranuclear cluster), and a Zn2+/proton antiporting membrane protein. Together these studies demonstrate a successful and generally applicable strategy for de novo metalloprotein design, which might indeed mimic the process by which primordial metalloproteins evolved. We began the design process with a highly symmetrical backbone and binding site, by using point-group symmetry to assemble the secondary structures that position the amino acid side chains required for binding. The resulting models provided a rough starting point and initial parameters for the subsequent precise design of thefinal protein using modern methods of computational protein design. Unless the desired site is itself symmetrical, this process requires reduction of the symmetry or lifting it altogether. Nevertheless, the initial symmetrical structure can be helpful to restrain the search space during assembly of the backbone. Finally, the methods described here should be generally applicable to the design of highly stable and robust catalysts and sensors. There is considerable potential in combining the efficiency and knowledge base associated with homogeneous metal catalysis with the programmability, biocompatibility, and versatility of proteins. While the work reported here focuses on testing and learning the principles of natural metalloproteins by designing and studying proteins one at a time, there is also considerable potential for using designed proteins that incorporate both biological and non biological metal ion cofactors for the evolution of novel catalysts.


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferri
Anchoring strategy: Dative
Optimization: Computational design
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: 1EC5
Notes: Additional PDB: 1LT1

De Novo Protein Design as a Methodology for Synthetic Bioinorganic Chemistry

Review

Pecoraro, V.L.

Acc. Chem. Res. 2015, 48, 2388-2396, 10.1021/acs.accounts.5b00175

The major advances in molecular and structural biology and automated peptide and DNA synthesis of the 1970s and 1980s generated fertile conditions in the 1990s for the exploration of designed proteins as a new approach for inorganic chemists to generate biomolecular mimics of metalloproteins. This Account follows the development of the TRI peptide family of three-stranded coiled coils (3SCC) and α3D family of three-helix bundles (3HB) as scaffolds for the preparation of metal binding sites within de novo designed constructs. The 3SCC were developed using the concept of a heptad repeat (abcdefg) putting hydrophobes in the a and d positions. The TRI peptides contain four heptads with capping glycines. Via substitution of leucine hydrophobes, metal ligands can be introduced into the a or d sites in order to bind metals. First, the ability to use cysteine-substituted 3SCC aggregates to impose higher or lower coordination numbers on Hg(II) and Cd(II) or matching the coordination preferences of As(III) and Pb(II) is discussed. Then, methods to develop dual site peptides capable of discriminating metals based on their type (e.g., Cd(II) vs Pb(II)), their preference for a vs d sites, and then their coordination number is described. Once these principles of metal site differentiation are described, we shift to building dual site peptides using both cysteine and histidine metal binding sites. This approach provides a construct with both a Hg(II) structural and a Zn(II) hydrolytic center, the latter of which is capable of hydrating CO2. With these Zn(II) proteins, we consider the relative importance of the location of the catalytic center along the primary sequence of the peptide and show that only minor perturbations in catalytic efficiencies are observed based on metal location. We then assess the feasibility of preparing enzymes competent to reduce nitrite with copper centers in a histidine-rich environment. As part of this discussion, we examine the influence of surface residues on catalyst reduction potentials and catalytic efficiencies. We end describing approaches to prepare asymmetric proteins that can incorporate acid–base catalysts or water channels. In this respect, we highlight modifications of a helix–turn–helix–turn–helix motif called α3D and show how this 3HB can be modified to bind heavy metals or to make Zn(II) centers, which are active hydrolytic catalysts. A comparison is made to the comparable parallel 3SCC.


Notes: ---

Design and Construction of Functional Supramolecular Metalloprotein Assemblies

Review

Tezcan, F.A.

Acc. Chem. Res. 2019, 52, 345-355, 10.1021/acs.accounts.8b00617

Nature puts to use only a small fraction of metal ions in the periodic table. Yet, when incorporated into protein scaffolds, this limited set of metal ions carry out innumerable cellular functions and execute essential biochemical transformations such as photochemical H2O oxidation, O2 or CO2 reduction, and N2 fixation, highlighting the outsized importance of metalloproteins in biology. Not surprisingly, elucidating the intricate interplay between metal ions and protein structures has been the focus of extensive structural and mechanistic scrutiny over the last several decades. As a result of such top-down efforts, we have gained a reasonably detailed understanding of how metal ions shape protein structures and how protein structures in turn influence metal reactivity. It is fair to say that we now have some idea–and in some cases, a good idea–about how most known metalloproteins function and we possess enough insight to quickly assess the modus operandi of newly discovered ones. However, translating this knowledge into an ability to construct functional metalloproteins from scratch represents a challenge at a whole different level: it is one thing to know how an automobile works; it is another to build one. In our quest to build new metalloproteins, we have taken an original approach in which folded, monomeric proteins are used as ligands or synthons for building supramolecular complexes through metal-mediated self-assembly (MDPSA, Metal-Directed Protein Self-Assembly). The interfaces in the resulting protein superstructures are subsequently tailored with covalent, noncovalent, or additional metal-coordination interactions for stabilization and incorporation of new functionalities (MeTIR, Metal Templated Interface Redesign). In an earlier Account, we had described the proof-of-principle studies for MDPSA and MeTIR, using a four-helix bundle, heme protein cytochrome cb562 (cyt cb562), as a model building block. By the end of those studies, we were able to demonstrate that a tetrameric, Zn-directed cyt cb562 complex (Zn4:M14) could be stabilized through computationally prescribed noncovalent interactions inserted into the nascent protein–protein interfaces. In this Account, we first describe the rationale and motivation for our particular metalloprotein engineering strategy and a brief summary of our earlier work. We then describe the next steps in the “evolution” of bioinorganic complexity on the Zn4:M14 scaffold, namely, (a) the generation of a self-standing protein assembly that can stably and selectively bind metal ions, (b) the creation of reactive metal centers within the protein assembly, and (c) the coupling of metal coordination and reactivity to external stimuli through allosteric effects.


Notes: ---

Designer Zinc Finger Proteins: Tools for Creating Artificial DNA-Binding Functional Proteins

Review

Sugiura, Y.

Acc. Chem. Res. 2006, 39, 45-52, 10.1021/ar050158u

The design of artificial functional DNA-binding proteins has long been a goal for several research laboratories. The zinc finger proteins, which typically contain many fingers linked in tandem fashion, are some of the most studied DNA-binding proteins. The zinc finger protein's tandem arrangement and its the ability to recognize a wide variety of DNA sequences make it an attractive framework to design novel DNA-binding peptides/proteins. Our laboratory has utilized several design strategies to create novel zinc finger peptides by re-engineering the C2H2-type zinc finger motif of transcription factor Sp1. Some of the engineered zinc fingers have shown nuclease and catalytic functional properties. Based on these results, we present the design strategies for the creation of novel zinc fingers.


Notes: ---

Designing Enzyme-Like Catalysts: A Rhodium(II) Metallopeptide Case Study

Review

Ball, Z.T.

Acc. Chem. Res. 2013, 46, 560-570, 10.1021/ar300261h

Chemists have long been fascinated by metalloenzymes and their chemistry. Because enzymes are essential for biological processes and to life itself, they present a key to understanding the world around us. At the same time, if chemists could harness the reactivity and selectivity of enzymes in designed transition-metal catalysts, we would have access to a powerful practical advance in chemistry. But the design of enzyme-like catalysts from scratch presents enormous challenges. Simplified, designed systems often don’t provide the opportunity to mimic the complex features of enzymes such as selectivity in polyfunctional environments and access to reactive intermediates incompatible with bulk aqueous solution. Extensive efforts by numerous groups have led to remarkable designed metalloproteins that contain complex folds, including well-defined secondary and tertiary structure surrounding complex polymetallic centers. These structural achievements, however, have not yet led to general approaches to useful catalysts; continued efforts and new insights are needed. Our efforts have combined the attributes of enzymatic and traditional catalysis, bringing the benefits of polypeptide ligands to bear on completely nonbiological transition-metal centers. With a focus on designing useful catalytic activity, we have examined rhodium(II) carboxylates, bound to peptide chains through carboxylate side chains. Among other advantages, these complexes are stable and catalytically active in water. Our efforts have centered on two main interests: (1) understanding how Nature’s ligand of choice, polypeptides, can be used to control the chemistry of nonbiological metal centers, and (2) mimicking metalloenzyme characteristics in designed, nonbiological catalysts. This Account conveys our motivation and goals for these studies, outlines progress to date, and discusses the future of enzyme-like catalyst design. In particular, these studies have resulted in on-bead, high-throughput screens for asymmetric metallopeptide catalysts. In addition, peptide-based molecular recognition strategies have facilitated the site-specific modification of protein substrates. Molecular recognition enables site-specific, proximity-driven modification of a broad range of amino acids, and the concepts outlined here are compatible with natural protein substrates and with complex, cell-like environments. We have also explored rhodium metallopeptides as hybrid organic–inorganic inhibitor molecules that block protein–protein interactions.


Notes: ---

Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?

Review

Reetz, M.T.

Acc. Chem. Res. 2019, 52, 336-344, 10.1021/acs.accounts.8b00582

Transition metal catalysts mediate a wide variety of chemo-, stereo-, and regioselective transformations, and therefore play a pivotal role in modern synthetic organic chemistry. Steric and electronic effects of ligands provide organic chemists with an exceedingly useful tool. More than four decades ago, chemists began to think about a different approach, namely, embedding achiral ligand/metal moieties covalently or noncovalently in protein hosts with formation of artificial metalloenzymes. While structurally fascinating, this approach led in each case only to a single (bio)catalyst, with its selectivity and activity being a matter of chance. In order to solve this fundamental problem, my group proposed in 2000−2002 the idea of directed evolution of artificial metalloenzymes. In earlier studies, we had already demonstrated that directed evolution of enzymes constitutes a viable method for enhancing and inverting the stereoselectivity of enzymes as catalysts inorganic chemistry. We speculated that it should also be possible to manipulate selectivity and activity of artificial metalloenzymes, which would provide organic chemists with a tool for optimizing essentially any transition metal catalyzed reaction type. In order to put this vision into practice, we first turned to the Whitesides system for artificial metalloenzyme formation, comprising a biotinylated diphosphine/Rh moiety, which is anchored noncovalently to avidin or streptavidin. Following intensive optimization, proof of principle was finally demonstrated in 2006, which opened the door to a new research area. This personal Account critically assesses these early studies as well as subsequent efforts from my group focusing on different protein scaffolds, and includes briefly some of the most important current contributions of other groups. Two primary messages emerge: First, since organic chemists continue to be extremely good at designing and implementing man-made transition metal catalysts, often on a large scale, those scientists that are active in the equally intriguing field of directed evolution of artificial metalloenzymes should be moderate when generalizing claims. All factors required for a truly viable catalytic system need to beconsidered, especially activity and ease of upscaling. Second, the most exciting and thus far very rare cases of directed evolution of artificial metalloenzymes are those that focus on selective transformations that are not readily possible using state of the art transition metal catalysts.


Notes: ---

Expansion of Redox Chemistry in Designer Metalloenzymes

Review

Wang, J.

Acc. Chem. Res. 2019, 52, 557-565, 10.1021/acs.accounts.8b00627

Many artificial enzymes that catalyze redox reactions have important energy, environmental, and medical applications. Native metalloenzymes use a set of redox-active amino acids and cofactors as redox centers, with a potential range between −700 and +800 mV versus standard hydrogen electrode (SHE, all reduction potentials are versus SHE). The redox potentials and the orientation of redox centers in native metalloproteins are optimal for their redox chemistry. However, the limited number and potential range of native redox centers challenge the design and optimization of novel redox chemistry in metalloenzymes. Artificial metalloenzymes use non-native redox centers and could go far beyond the natural range of redox potentials for novel redox chemistry. In addition to designing protein monomers, strategies for increasing the electron transfer rate in self-assembled protein complexes and protein–electrode or −nanomaterial interfaces will be discussed. Redox reactions in proteins occur on redox active amino acid residues (Tyr, Trp, Met, Cys, etc.) and cofactors (iron sulfur clusters, flavin, heme, etc.). The redox potential of these redox centers cover a ∼1.5 V range and is optimized for their specific functions. Despite recent progress, tuning the redox potential for amino acid residues or cofactors remains challenging. Many redox-active unnatural amino acids (UAAs) can be incorporated into protein via genetic codon expansion. Their redox potentials extend the range of physiologically relevant potentials. Indeed, installing new redox cofactors with fined-tuned redox potentials is essential for designing novel redox enzymes. By combining UAA and redox cofactor incorporation, we harnessed light energy to reduce CO2 in a fluorescent protein, mimicking photosynthetic apparatus in nature. Manipulating the position and reduction potential of redox centers inside proteins is important for optimizing the electron transfer rate and the activity of artificial enzymes. Learning from the native electron transfer complex, protein–protein interactions can be enhanced by increasing the electrostatic interaction between proteins. An artificial oxidase showed close to native enzyme activity with optimized interaction with electron transfer partner and increased electron transfer efficiency. In addition to the de novo design of protein–protein interaction, protein self-assembly methods using scaffolds, such as proliferating cell nuclear antigen, to efficiently anchor enzymes and their redox partners. The self-assembly process enhances electron transfer efficiency and enzyme activity by bringing redox centers into close proximity of each other. In addition to protein self-assembly, protein–electrode or protein–nanomaterial self-assembly can also promote efficient electron transfer from inorganic materials to enzyme active sites. Such hybrid systems combine the efficiency of enzyme reactions and the robustness of electrodes or nanomaterials, often with advantageous catalytic activities. By combining these strategies, we can not only mimic some of nature’s most fascinating reactions, such as photosynthesis and aerobic respiration, but also transcend nature toward environmental, energy, and health applications.


Notes: ---

From Enzyme Maturation to Synthetic Chemistry: The Case of Hydrogenases

Review

Fontecave, M.

Acc. Chem. Res. 2015, 48, 2380-2387, 10.1021/acs.accounts.5b00157

Water splitting into oxygen and hydrogen is one of the most attractive strategies for storing solar energy and electricity. Because the processes at work are multielectronic, there is a crucial need for efficient and stable catalysts, which in addition have to be cheap for future industrial developments (electrolyzers, photoelectrochemicals, and fuel cells). Specifically for the water/hydrogen interconversion, Nature is an exquisite source of inspiration since this chemistry contributes to the bioenergetic metabolism of a number of living organisms via the activity of fascinating metalloenzymes, the hydrogenases. In this Account, we first briefly describe the structure of the unique dinuclear organometallic active sites of the two classes of hydrogenases as well as the complex protein machineries involved in their biosynthesis, their so-called maturation processes. This knowledge allows for the development of a fruitful bioinspired chemistry approach, which has already led to a number of interesting and original catalysts mimicking the natural active sites. More specifically, we describe our own attempts to prepare artificial hydrogenases. This can be achieved via the standard bioinspired approach using the combination of a synthetic bioinspired catalyst and a polypeptide scaffold. Such hybrid complexes provide the opportunity to optimize the system by manipulating both the catalyst through chemical synthesis and the protein component through mutagenesis. We also raise the possibility to reach such artificial systems via an original strategy based on mimicking the enzyme maturation pathways. This is illustrated in this Account by two examples developed in our laboratory. First, we show how the preparation of a lysozyme–{MnI(CO)3} hybrid and its clean reaction with a nickel complex led us to generate a new class of binuclear Ni-Mn H2-evolving catalysts mimicking the active site of [NiFe]-hydrogenases. Then we describe how we were able to rationally design and prepare a hybrid system, displaying remarkable structural similarities to an [FeFe]-hydrogenase, and we show here for the first time that it is catalytically active for proton reduction. This system is based on the combination of HydF, a protein involved in the maturation of [FeFe]-hydrogenase (HydA), and a close mimic of the active site of this class of enzymes. Moreover, the synthetic [Fe2(adt)(CO)4(CN)2]2– (adt2–= aza-propanedithiol) mimic, alone or within a HydF hybrid system, was shown to be able to maturate and activate a form of HydA itself lacking its diiron active site. We discuss the exciting perspectives this “synthetic maturation” opens regarding the “invention” of novel hydrogenases by the chemists.


Notes: ---

LmrR: A Privileged Scaffold for Artificial Metalloenzymes

Review

Roelfes, G.

Acc. Chem. Res. 2019, 52, 545-556, 10.1021/acs.accounts.9b00004

The biotechnological revolution has made it possible to create enzymes for many reactions by directed evolution. However, because of the immense number of possibilities, the availability of enzymes that possess a basal level of the desired catalytic activity is a prerequisite for success. For new-to-nature reactions, artificial metalloenzymes (ARMs), which are rationally designed hybrids of proteins and catalytically active transition-metal complexes, can be such a starting point. This Account details our efforts toward the creation of ARMs for the catalysis of new-to-nature reactions. Key to our approach is the notion that the binding of substrates, that is, effective molarity, is a key component to achieving large accelerations in catalysis. For this reason, our designs are based on the multidrug resistance regulator LmrR, a dimeric transcription factor with a large, hydrophobic binding pocket at its dimer interface. In this pocket, there are two tryptophan moieties, which are important for promiscuous binding of planar hydrophobic conjugated compounds by π-stacking. The catalytic machinery is introduced either by the covalent linkage of a catalytically active metal complex or via the ligand or supramolecular assembly, taking advantage of the two central tryptophan moieties for noncovalent binding of transition-metal complexes. Designs based on the chemical modification of LmrR were successful in catalysis, but this approach proved too laborious to be practical. Therefore, expanded genetic code methodologies were used to introduce metal binding unnatural amino acids during LmrR biosynthesis in vivo. These ARMs have been successfully applied in Cu(II) catalyzed Friedel–Crafts alkylation of indoles. The extension to MDRs from the TetR family resulted in ARMs capable of providing the opposite enantiomer of the Friedel–Crafts product. We have employed a computationally assisted redesign of these ARMs to create a more active and selective artificial hydratase, introducing a glutamate as a general base at a judicious position so it can activate and direct the incoming water nucleophile. A supramolecularly assembled ARM from LmrR and copper(II)–phenanthroline was successful in Friedel–Crafts alkylation reactions, giving rise to up to 94% ee. Also, hemin was bound, resulting in an artificial heme enzyme for enantioselective cyclopropanation reactions. The importance of structural dynamics of LmrR was suggested by computational studies, which showed that the pore can open up to allow access of substrates to the catalytic iron center, which, according to the crystal structure, is deeply buried inside the protein. Finally, the assembly approaches were combined to introduce both a catalytic and a regulatory domain, resulting in an ARM that was specifically activated in the presence of Fe(II) salts but not Zn(II) salts. Our work demonstrates that LmrR is a privileged scaffold for ARM design: It allows for multiple assembly methods and even combinations of these, it can be applied in a variety of different catalytic reactions, and it shows significant structural dynamics that contribute to achieving the desired catalytic activity. Moreover, both the creation via expanded genetic code methods as well as the supramolecular assembly make LmrR-based ARMs highly suitable for achieving the ultimate goal of the integration of ARMs in biosynthetic pathways in vivo to create a hybrid metabolism.


Notes: ---

Metal-Assembled Modular Proteins: Toward Functional Protein Design

Review

Case, M.A.

Acc. Chem. Res. 2004, 10.1021/ar960245+

Metal-assembled parallel helix-bundle proteins have been used to investigate electron transfer through α-helical structures. Fermi Golden Rule distance dependence of electron transfer rates was established in a family of designed metalloproteins, and the contribution of intrahelical hydrogen bonding to the matrix tunneling element was explored. The first steps toward the design of functional proteins using dynamic combinatorial assembly of α-helical structural elements are described.


Notes: ---

Modular Homogeneous Chromophore-Catalyst Assemblies

Review

Mulfort, K.L.

Acc. Chem. Res. 2016, 49, 835-843, 10.1021/acs.accounts.5b00539

Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate that molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule–nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis.


Notes: ---

Molecular Modeling for Artificial Metalloenzyme Design and Optimization

Review

Maréchal, J.-D.

Acc. Chem. Res. 2020, 53, 896-905, 10.1021/acs.accounts.0c00031

Artificial metalloenzymes (ArMs) are obtained by inserting homogeneous catalysts into biological scaffolds and are among the most promising strategies in the quest for new-to-nature biocatalysts. The quality of their design strongly depends on how three partners interact: the biological host, the “artificial cofactor,” and the substrate. However, structural characterization of functional artificial metalloenzymes by X-ray or NMR is often partial, elusive, or absent. How the cofactor binds to the protein, how the receptor reorganizes upon the binding of the cofactor and the substrate, and which are the binding mode(s) of the substrate for the reaction to proceed are key questions that are frequently unresolved yet crucial for ArM design. Such questions may eventually be solved by molecular modeling but require a step change beyond the current state-of-the-art methodologies. Here, we summarize our efforts in the study of ArMs, presenting both the development of computational strategies and their application. We first focus on our integrative computational framework that incorporates a variety of methods such as protein–ligand docking, classical molecular dynamics (MD), and pure quantum mechanical (QM) methods, which, when properly combined, are able to depict questions that range from host–cofactor binding predictions to simulations of entire catalytic mechanisms. We also pay particular attention to the protein–ligand docking strategies that we have developed to accurately predict the binding of transition metal-containing molecules to proteins. While this aspect is fundamental to many bioinorganic fields beyond ArMs, it has been disregarded from the molecular modeling landscape until very recently. Next we describe how to apply this computational framework to particular ArMs including systems previously characterized experimentally as well as others where computation served to guide the design. We start with the prediction of the interactions between homogeneous catalysts and biological hosts. Protein–ligand docking is pivotal at that stage, but it needs to be combined with QM/MM or MD approaches when the binding of the cofactor implies significant conformational changes of the protein or involve changes of the electronic state of the metal. Then, we summarize molecular modeling studies aimed at identifying cofactor–substrate arrangements inside the ArM active pocket that are consistent with its reactivity. These calculations stand on “Theozyme”-like dockings, MD-refined or not, which provide molecular rationale of the catalytic profiles of the artificial systems. In the third section, we present case studies to decode the entire catalytic mechanism of two ArMs: (1) an iridium based asymmetric transfer hydrogenase obtained by insertion of Noyori’s catalyst into streptavidin and (2) a metallohydrolase achieved by including a receptor. Transition states, second coordination sphere effects, as well as motions of the cofactors are identified as drivers of the enantiomeric profiles. Finally, we report computer-aided designs of ArMs to guide experiments toward chemical and mutational changes that improve their activity and/or enantioselective profiles and expand toward future directions.


Notes: ---

New Functionalization of Myoglobin by Chemical Modification of Heme-Propionates

Review

Acc. Chem. Res. 2002, 35, 35-43, 10.1021/ar000087t

The reconstitution of myoglobin with an artificially created prosthetic group is a unique method for introducing a new chemical function into the protein. Particularly, the modification of two heme-propionates gives us an effective binding domain or binding site on the protein surface. This Account traces the design and construction of the highly ordered binding domain around the entrance of the heme pocket. The discussion includes the protein−small molecule or protein−protein recognition, electron transfer reaction within the complex, and enhancement of the chemical reactivity of the myoglobin with a substrate binding site. The synthetic approach to modifying a protein will be a new trend in engineering a novel function in naturally occurring hemoprotein.


Notes: ---

Noble−Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis

Review

Hartwig, J.F.

Acc. Chem. Res. 2019, 52, 326-335, 10.1021/acs.accounts.8b00586

Enzymes have evolved to catalyze a range of biochemical transformations with high efficiencies and unparalleled selectivities, including stereoselectivities, regioselectivities, chemoselectivities, and substrate selectivities, while typically operating under mild aqueous conditions. These properties have motivated extensive research to identify or create enzymes with reactivity that complements or even surpasses the reactivity of small-molecule catalysts for chemical reactions. One of the limitations preventing the wider use of enzymes in chemical synthesis, however, is the narrow range of bond constructions catalyzed by native enzymes. One strategy to overcome this limitation is to create artificial metalloenzymes (ArMs) that combine the molecular recognition of nature with the reactivity discovered by chemists. This Account describes a new approach for generating ArMs by the formal replacement of the natural iron found in the porphyrin IX (PIX) of hemoproteins with noble metals. Analytical techniques coupled with studies of chemical reactivity have demonstrated that expression of apomyoglobins and apocytochrome P450s (for which “apo-” denotes the cofactor-free protein) followed by reconstitution with metal−PIX cofactors in vitro creates proteins with little perturbation of the native structure, suggesting that the cofactors likely reside within the native active site. By means of this metal substitution strategy, a large number of ArMs have been constructed that contain varying metalloporphyrins and mutations of the protein. The studies discussed in this Account encompass the use of ArMs containing noble metals to catalyze a range of abiological transformations with high chemoselectivity, enantioselectivity, diastereoselectivity, and regioselectivity. These transformations include intramolecular and intermolecular insertion of carbenes into C−H, N−H, and S−H bonds, cyclopropanation of vinylarenes and of internal and nonconjugated alkenes, and intramolecular insertions of nitrenes into C−H bonds. The rates of intramolecular insertions into C−H bonds catalyzed by thermophilic P450 enzymes reconstituted with an Ir(Me)−PIX cofactor are now comparable to the rates of reactions catalyzed by native enzymes and, to date, 1000 times greater than those of any previously reported ArM. This reactivity also encompasses the selective intermolecular insertion of the carbene from ethyl diazoacetate into C−H bonds over dimerization of the carbene to form alkenes, a class of carbene insertion or selectivity not reported to occur with small-molecule catalysts. These combined results highlight the potential of well-designed ArMs to catalyze abiological transformations that have been challenging to achieve with any type of catalyst. The metal substitution strategy described herein should complement the reactivity of native enzymes and expand the scope of enzyme-catalyzed reactions.


Notes: ---