5 publications

5 publications

Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase

Liu, X.; Wang, J.; Wu, Y.; Zhong, F.

J. Am. Chem. Soc. 2021, 143, 617-622, 10.1021/jacs.0c10882

Devising artificial photoenzymes for abiological bond-forming reactions is of high synthetic value but also a tremendous challenge. Disclosed herein is the first photobiocatalytic cross-coupling of aryl halides enabled by a designer artificial dehalogenase, which features a genetically encoded benzophenone chromophore and site-specifically modified synthetic NiII(bpy) cofactor with tunable proximity to streamline the dual catalysis. Transient absorption studies suggest the likelihood of energy transfer activation in the elementary organometallic event. This design strategy is viable to significantly expand the catalytic repertoire of artificial photoenzymes for useful organic transformations.


Metal: Ni
Ligand type: Bipyridine
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Reaction: Cross-coupling
Max TON: 223
ee: ---
PDB: ---
Notes: ---

Catalytic Water Oxidation by Iridium-Modified Carbonic Anhydrase

Lee, S.-Y.

Chem. - Asian J. 2018, 13, 334-341, 10.1002/asia.201701543

Carbonic anhydrase (CA) is a ubiquitous metalloenzyme with a Zn cofactor coordinated to trigonal histidine imidazole moieties in a tetrahedral geometry. Removal of the Zn cofactor in CA and subsequent binding of Ir afforded CA[Ir]. Under mild and neutral conditions (30 °C, pH 7), CA[Ir] exhibited water‐oxidizing activity with a turnover frequency (TOF) of 39.8 min−1, which is comparable to those of other Ir‐based molecular catalysts. Coordination of Ir to the apoprotein of CA is thermodynamically preferred and is associated with an exothermic energy change (ΔH) of −10.8 kcal mol−1, which implies that the CA apoprotein is stabilized by Ir binding. The catalytic oxygen‐evolving activity of CA[Ir] is displayed only if Ir is bound to CA, which functions as an effective biological scaffold that activates the Ir center for catalysis. The results of this study indicate that the histidine imidazoles at the CA active site could be exploited as beneficial biological ligands to provide unforeseen biochemical activity by coordination to a variety of transition‐metal ions.


Metal: Ir
Ligand type: Amino acid
Anchoring strategy: Metal substitution
Optimization: Chemical
Reaction: Water oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: Sodium periodate as sacrificial oxidant. TOF at pH 7 and 30°C is 39.8 min-1.

Enzyme Repurposing of a Hydrolase as an Emergent Peroxidase Upon Metal Binding

Fujieda, N.; Ward, T.R.

Chem. Sci. 2015, 6, 4060-4065, 10.1039/c5sc01065a

Adding a metal cofactor to a protein bearing a latent metal binding site endows the macromolecule with nascent catalytic activity.


Metal: Cu
Ligand type: Amino acid
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 35
ee: ---
PDB: ---
Notes: ---

Proteins as Macromolecular Ligands for Metal-Catalysed Asymmetric Transfer Hydrogenation of Ketones in Aqueous Medium

Salmain, M.

Eur. J. Inorg. Chem. 2018, 2018, 1383-1393, 10.1002/ejic.201701359

Biohybrid catalysts resulting from the dative anchoring of half‐sandwich organometallic complexes [M(arene)(H2O)x(Cl)y]n+ (M = RuII, arene = η6‐benzene, p‐cymene or mesitylene; M = IrIII, RhIII, arene = η5‐Cp*; x = 1–3, y = 0–2, n = 0–2) to bovine beta‐lactoglobulin (βLG) or hen egg white lysozyme showed unprecedented behaviour. These constructs were shown to catalyse the asymmetric transfer hydrogenation of aryl ketones in water with sodium formate as hydrogen donor at a much faster rate than the complexes alone. Full conversion of the benchmark substrate 2,2,2‐trifluoroacetophenone was reached with an ee of 86 % for the most selective biohybrid. Surprisingly, even the crude biohybrid gave a good ee despite the presence of non‐protein‐bound metal species in the reaction medium. Other aryl ketones were reduced in the same way, and the highest ee was obtained for ortho‐substituted acetophenone derivatives. Furthermore, treatment of βLG with dimethyl pyrocarbonate resulted in a noticeable decrease of the activity and selectivity of the biohybrid, indicating that the sole accessible histidine residue (His146) was probably involved in the coordination and activation of Ru(benzene). This work underscores that protein scaffolds are efficient chiral ligands for asymmetric catalysis. The use of sodium formate instead of dihydrogen makes this approach safe, inexpensive and environmentally friendly.


Metal: Ru
Ligand type: Benzene derivatives
Anchoring strategy: Undefined
Optimization: ---
Max TON: 43
ee: 82
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Cp*
Anchoring strategy: Undefined
Optimization: ---
Max TON: 16
ee: 14
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Cp*
Anchoring strategy: Undefined
Optimization: ---
Max TON: 20
ee: 16
PDB: ---
Notes: ---

Structural Basis for Enantioselectivity in the Transfer Hydrogenation of a Ketone Catalyzed by an Artificial Metalloenzyme

Fontecilla-Camps, J.C.

Eur. J. Inorg. Chem. 2013, 2013, 3596-3600, 10.1002/ejic.201300592

The crystal structure of bovine β‐lactoglobulin bound to a complex consisting of a (η5‐Cp*)Rh(2,2′‐dipyridylamine) head and a lauric acid derived hydrophobic tail has been solved at 1.85 Å resolution. Previous work has shown that this hybrid catalyzes the transfer hydrogenation of an aryl ketone in neat water with formate as hydrogen donor with enantiomeric excess (ee) of about 26 %. Calculations using the X‐ray model indicate that the complex head can adopt discrete conformations, which may explain the ee observed.


Metal: Rh
Ligand type: 2,2'-Dipyridylamine; Cp*
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: ---
ee: 26
PDB: 4KII
Notes: ---