8 publications
-
Artificial Metalloproteins Containing Co4O4 Cubane Active Sites
-
J. Am. Chem. Soc. 2018, 140, 2739-2742, 10.1021/jacs.7b13052
Artificial metalloproteins (ArMs) containing Co4O4 cubane active sites were constructed via biotin–streptavidin technology. Stabilized by hydrogen bonds (H-bonds), terminal and cofacial CoIII–OH2 moieties are observed crystallographically in a series of immobilized cubane sites. Solution electrochemistry provided correlations of oxidation potential and pH. For variants containing Ser and Phe adjacent to the metallocofactor, 1e–/1H+ chemistry predominates until pH 8, above which the oxidation becomes pH-independent. Installation of Tyr proximal to the Co4O4 active site provided a single H-bond to one of a set of cofacial CoIII–OH2 groups. With this variant, multi-e–/multi-H+ chemistry is observed, along with a change in mechanism at pH 9.5 that is consistent with Tyr deprotonation. With structural similarities to both the oxygen-evolving complex of photosystem II (H-bonded Tyr) and to thin film water oxidation catalysts (Co4O4 core), these findings bridge synthetic and biological systems for water oxidation, highlighting the importance of secondary sphere interactions in mediating multi-e–/multi-H+ reactivity.
Metal: CoHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Co-complex in Sav WT
Metal: CoHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Co-complex in Sav S112Y
-
Carbene in Cupredoxin Protein Scaffolds: Replacement of a Histidine Ligand in the Active Site Substantially Alters Copper Redox Properties
-
Angew. Chem. Int. Ed. 2018, 130, 10837-10842, 10.1002/ange.201807168
Im Tausch gegen NHC: Die Einfügung eines N‐heterocyclischen Carbenliganden (grün/blau) als Ersatz für His in das aktive Zentrum des Redoxenzyms Azurin rekonstituiert das T1‐Kupferzentrum. Der resultierende Komplex ist spektroskopisch kaum unterscheidbar von der N‐Bindung von His oder N‐Methylimidazol, senkt aber signifikant das Reduktionspotential des Kupferzentrums und erleichtert dadurch Elektronentransferprozesse.
Notes: ---
-
Library Design and Screening Protocol for Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology
-
Nat. Protoc. 2016, 11, 835-852, 10.1038/nprot.2016.019
Artificial metalloenzymes (ArMs) based on the incorporation of a biotinylated metal cofactor within streptavidin (Sav) combine attractive features of both homogeneous and enzymatic catalysts. To speed up their optimization, we present a streamlined protocol for the design, expression, partial purification and screening of Sav libraries. Twenty-eight positions have been subjected to mutagenesis to yield 335 Sav isoforms, which can be expressed in 24-deep-well plates using autoinduction medium. The resulting cell-free extracts (CFEs) typically contain >1 mg of soluble Sav. Two straightforward alternatives are presented, which allow the screening of ArMs using CFEs containing Sav. To produce an artificial transfer hydrogenase, Sav is coupled to a biotinylated three-legged iridium pianostool complex Cp*Ir(Biot-p-L)Cl (the cofactor). To screen Sav variants for this application, you would determine the number of free binding sites, treat them with diamide, incubate them with the cofactor and then perform the reaction with your test compound (the example used in this protocol is 1-phenyl-3,4-dihydroisoquinoline). This process takes 20 d. If you want to perform metathesis reactions, Sav is coupled to a biotinylated second-generation Grubbs-Hoveyda catalyst. In this application, it is best to first immobilize Sav on Sepharose-iminobiotin beads and then perform washing steps. Elution from the beads is achieved in an acidic reaction buffer before incubation with the cofactor. Catalysis using your test compound (in this protocol, 2-(4-(N,N-diallylsulfamoyl)phenyl)-N,N,N-trimethylethan-1-aminium iodide) is performed using the formed metalloenzyme. Screening using this approach takes 19 d.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Purified streptavidin (mutant K121A)
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Cell free extract (mutant Sav K121A) treated with diamide
Metal: RuLigand type: N-heterocyclic carbeneHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Purified streptavidin (mutant K121A)
Metal: RuLigand type: N-heterocyclic carbeneHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Cell free extract (mutant Sav K121A immobilised on iminobiotin-sepharose beads)
-
Methane Generation and Reductive Debromination of Benzylic Position by Reconstituted Myoglobin Containing Nickel Tetradehydrocorrin as a Model of Methyl-coenzyme M Reductase
-
Inorg. Chem. 2020, 59, 11995-12004, 10.1021/acs.inorgchem.0c00901
Methyl-coenzyme M reductase (MCR), which contains the nickel hydrocorphinoid cofactor F430, is responsible for biological methane generation under anaerobic conditions via a reaction mechanism which has not been completely elucidated. In this work, myoglobin reconstituted with an artificial cofactor, nickel(I) tetradehydrocorrin (NiI(TDHC)), is used as a protein-based functional model for MCR. The reconstituted protein, rMb(NiI(TDHC)), is found to react with methyl donors such as methyl p-toluenesulfonate and trimethylsulfonium iodide with methane evolution observed in aqueous media containing dithionite. Moreover, rMb(NiI(TDHC)) is found to convert benzyl bromide derivatives to reductively debrominated products without homocoupling products. The reactivity increases in the order of primary > secondary > tertiary benzylic carbons, indicating steric effects on the reaction of the nickel center with the benzylic carbon in the initial step. In addition, Hammett plots using a series of para-substituted benzyl bromides exhibit enhancement of the reactivity with introduction of electron-withdrawing substituents, as shown by the positive slope against polar substituent constants. These results suggest a nucleophilic SN2-type reaction of the Ni(I) species with the benzylic carbon to provide an organonickel species as an intermediate. The reaction in D2O buffer at pD 7.0 causes a complete isotope shift of the product by +1 mass unit, supporting our proposal that protonation of the organonickel intermediate occurs during product formation. Although the turnover numbers are limited due to inactivation of the cofactor by side reactions, the present findings will contribute to elucidating the reaction mechanism of MCR-catalyzed methane generation from activated methyl sources and dehalogenation.
Metal: NiLigand type: TetradehydrocorrinHost protein: Myoglobin (Mb)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
Metal: CoLigand type: TetradehydrocorrinHost protein: Myoglobin (Mb)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
-
Nature-Driven Photochemistry for Catalytic Solar Hydrogen Production: A Photosystem I-Transition Metal Catalyst Hybrid
-
J. Am. Chem. Soc. 2011, 133, 16334-16337, 10.1021/ja206012r
Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon fixation. Herein, we use one of Nature’s specialized energy-converters, the Photosystem I (PSI) protein, to drive hydrogen production from a synthetic molecular catalyst comprised of inexpensive, earth-abundant materials. PSI and a cobaloxime catalyst self-assemble, and the resultant complex rapidly produces hydrogen in aqueous solution upon exposure to visible light. This work establishes a strategy for enhancing photosynthetic efficiency for solar fuel production by augmenting natural photosynthetic systems with synthetically tunable abiotic catalysts.
Notes: Recalculated TON
-
Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology
-
Helv. Chim. Acta 2018, 101, e1800036, 10.1002/hlca.201800036
Photocatalytic hydrogen evolution by an artificial hydrogenase based on the biotin‐streptavidin technology is reported. A biotinylated cobalt pentapyridyl‐based hydrogen evolution catalyst (HEC) was incorporated into different mutants of streptavidin. Catalysis with [Ru(bpy)3]Cl2 as a photosensitizer (PS) and ascorbate as sacrificial electron donor (SED) at different pH values highlighted the impact of close lying amino acids that may act as a proton relay under the reaction conditions (Asp, Arg, Lys). In the presence of a close‐lying lysine residue, both, the rates were improved, and the reaction was initiated much faster. The X‐ray crystal structure of the artificial hydrogenase reveals a distance of 8.8 Å between the closest lying Co‐moieties. We thus suggest that the hydrogen evolution mechanism proceeds via a single Co centre. Our findings highlight that streptavidin is a versatile host protein for the assembly of artificial hydrogenases and their activity can be fine‐tuned via mutagenesis.
Metal: CoHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Synthesis of a Sequence-Specific DNA-Cleaving Peptide
-
Science 1987, 238, 1129-1132, 10.1126/science.3120311
A synthetic 52-residue peptide based on the sequence-specific DNA-binding domain of Hin recombinase (139-190) has been equipped with ethylenediaminetetraacetic acid (EDTA) at the amino terminus. In the presence of Fe(II), this synthetic EDTA-peptide cleaves DNA at Hin recombination sites. The cleavage data reveal that the amino terminus of Hin(139-190) is bound in the minor groove of DNA near the symmetry axis of Hin recombination sites. This work demonstrates the construction of a hybrid peptide combining two functional domains: sequence-specific DNA binding and DNA cleavage.
Metal: FeLigand type: EDTAHost protein: Domain of Hin recombinaseAnchoring strategy: CovalentOptimization: ---Notes: Engineered sequence specificity
-
Transfer Hydrogenations Catalyzed by Streptavidin-Hosted Secondary Amine Organocatalysts
-
Chem. Commun. 2021, 57, 1919-1922, 10.1039/d0cc08142f
Here, the streptavidin–biotin technology was applied to enable organocatalytic transfer hydrogenation. By introducing a biotin-tethered pyrrolidine (1) to the tetrameric streptavidin (T-Sav), the resulting hybrid catalyst was able to mediate hydride transfer from dihydro-benzylnicotinamide (BNAH) to α,β-unsaturated aldehydes. Hydrogenation of cinnamaldehyde and some of its aryl-substituted analogues was found to be nearly quantitative. Kinetic measurements revealed that the T-Sav:1 assembly possesses enzyme-like behavior, whereas isotope effect analysis, performed by QM/MM simulations, illustrated that the step of hydride transfer is at least partially rate-limiting. These results have proven the concept that T-Sav can be used to host secondary amine-catalyzed transfer hydrogenations.
Metal: ---Ligand type: Biotinylated pyrrolidineHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: ---Notes: Maximum conversion is 95%; Efficiency of hydride transfer is largely affected by electrostatic properties of the para substituents of the aromatic a,b-unsaturated aldehyde substrate (cinnamaldehyde)