17 publications

17 publications

Aqueous Light Driven Hydrogen Production by a Ru–Ferredoxin–Co Biohybrid

Utschig, L.M.

Chem. Commun. 2015, 51, 10628-10631, 10.1039/c5cc03006d

Long-lived charge separation facilitates photocatalytic H2 production in a mini reaction center/catalyst complex.


Metal: Co
Ligand type: Oxime
Host protein: Ferredoxin (Fd)
Anchoring strategy: Dative
Optimization: ---
Reaction: H2 evolution
Max TON: 210
ee: ---
PDB: ---
Notes: Recalculated TON

Artificial Hydrogenases Based on Cobaloximes and Heme Oxygenase

Artero, V.

ChemPlusChem 2016, 81, 1083-1089, 10.1002/cplu.201600218

The insertion of cobaloxime catalysts in the heme‐binding pocket of heme oxygenase (HO) yields artificial hydrogenases active for H2 evolution in neutral aqueous solutions. These novel biohybrids have been purified and characterized by using UV/visible and EPR spectroscopy. These analyses revealed the presence of two distinct binding conformations, thereby providing the cobaloxime with hydrophobic and hydrophilic environments, respectively. Quantum chemical/molecular mechanical docking calculations found open and closed conformations of the binding pocket owing to mobile amino acid residues. HO‐based biohybrids incorporating a {Co(dmgH)2} (dmgH2=dimethylglyoxime) catalytic center displayed up to threefold increased turnover numbers with respect to the cobaloxime alone or to analogous sperm whale myoglobin adducts. This study thus provides a strong basis for further improvement of such biohybrids, using well‐designed modifications of the second and outer coordination spheres, through site‐directed mutagenesis of the host protein.


Metal: Co
Ligand type: Oxime
Host protein: Heme oxygenase (HO)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: H2 evolution
Max TON: 15.3
ee: ---
PDB: ---
Notes: ---

Artificial Metalloproteins Containing Co4O4 Cubane Active Sites

Borovik, A.S.; Don Tilley, T.

J. Am. Chem. Soc. 2018, 140, 2739-2742, 10.1021/jacs.7b13052

Artificial metalloproteins (ArMs) containing Co4O4 cubane active sites were constructed via biotin–streptavidin technology. Stabilized by hydrogen bonds (H-bonds), terminal and cofacial CoIII–OH2 moieties are observed crystallographically in a series of immobilized cubane sites. Solution electrochemistry provided correlations of oxidation potential and pH. For variants containing Ser and Phe adjacent to the metallocofactor, 1e–/1H+ chemistry predominates until pH 8, above which the oxidation becomes pH-independent. Installation of Tyr proximal to the Co4O4 active site provided a single H-bond to one of a set of cofacial CoIII–OH2 groups. With this variant, multi-e–/multi-H+ chemistry is observed, along with a change in mechanism at pH 9.5 that is consistent with Tyr deprotonation. With structural similarities to both the oxygen-evolving complex of photosystem II (H-bonded Tyr) and to thin film water oxidation catalysts (Co4O4 core), these findings bridge synthetic and biological systems for water oxidation, highlighting the importance of secondary sphere interactions in mediating multi-e–/multi-H+ reactivity.


Metal: Co
Ligand type: OAc; Pyridine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 6AUC
Notes: Co-complex in Sav WT

Metal: Co
Ligand type: OAc; Pyridine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 6AUE
Notes: Co-complex in Sav S112Y

Bovine Serum Albumin-Cobalt(II) Schiff Base Complex Hybrid: An Efficient Artificial Metalloenzyme for Enantioselective Sulfoxidation using Hydrogen Peroxide

Bian, H.-D.; Liang, H.

Dalton Trans. 2016, 45, 8061-8072, 10.1039/C5DT04507J

An artificial metalloenzyme (BSA–CoL) based on the incorporation of a cobalt(ii) Schiff base complex {CoL, H2L = 2,2′-[(1,2-ethanediyl)bis(nitrilopropylidyne)]bisphenol} with bovine serum albumin (BSA) has been synthesized and characterized.


Metal: Co
Ligand type: Amine; Phenolate
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 98
ee: 87
PDB: ---
Notes: ---

Cobaloxime-Based Artificial Hydrogenase

Artero, V.

Inorg. Chem. 2014, 53, 8071-8082, 10.1021/ic501014c

Cobaloximes are popular H2 evolution molecular catalysts but have so far mainly been studied in nonaqueous conditions. We show here that they are also valuable for the design of artificial hydrogenases for application in neutral aqueous solutions and report on the preparation of two well-defined biohybrid species via the binding of two cobaloxime moieties, {Co(dmgH)2} and {Co(dmgBF2)2} (dmgH2 = dimethylglyoxime), to apo Sperm-whale myoglobin (SwMb). All spectroscopic data confirm that the cobaloxime moieties are inserted within the binding pocket of the SwMb protein and are coordinated to a histidine residue in the axial position of the cobalt complex, resulting in thermodynamically stable complexes. Quantum chemical/molecular mechanical docking calculations indicated a coordination preference for His93 over the other histidine residue (His64) present in the vicinity. Interestingly, the redox activity of the cobalt centers is retained in both biohybrids, which provides them with the catalytic activity for H2 evolution in near-neutral aqueous conditions.


Metal: Co
Ligand type: Oxime
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: H2 evolution
Max TON: 5
ee: ---
PDB: ---
Notes: Sperm whale myoglobin

Contributions of primary coordination ligands and importance of outer sphere interactions in UFsc, a de novo designed protein with high affinity for metal ions

Makhlynets, O.V.

J. Inorg. Biochem. 2020, 212, 111224, 10.1016/j.jinorgbio.2020.111224

Metalloproteins constitute nearly half of all proteins and catalyze some of the most complex chemical reactions. Recently, we reported a design of 4G-UFsc (Uno Ferro single chain), a single chain four-helical bundle with extraordinarily high (30 pM) affinity for zinc. We evaluated the contribution of different side chains to binding of Co(II), Ni(II), Zn(II) and Mn(II) using systematic mutagenesis of the amino acids that constitute the primary metal coordination and outer spheres. The binding affinity of proteins for metals was then measured using isothermal titration calorimetry. Our results show that both primary metal coordination environment and side chains in the outer sphere of UFsc are highly sensitive to even slight changes and can be adapted to binding different 3d metals, including hard-to-tightly bind metal ions such as Mn(II). The studies on the origins of tight metal binding will guide future metalloprotein design efforts.


Metal: Co; Mn; Ni; Zn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Reaction: ---
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Highly Malleable Harm-Binding Site of the Haemoprotein HasA Permits Stable Accommodation of Bulky Tetraphenylporphycenes

Shoji, O.

RSC Adv. 2019, 9, 18697-18702, 10.1039/c9ra02872b

Iron(III)- and cobalt(III)-9,10,19,20-tetraphenylporphycenes, which possess bulky phenyl groups at the four meso positions of porphycene, were successfully incorporated into the haem acquisition protein HasA secreted by Pseudomonas aeruginosa. Crystal structure analysis revealed that loops surrounding the haem-binding site are highly flexible, remodelling themselves to accommodate bulky metal complexes with significantly different structures from the native haem cofactor.


Metal: Co; Fe
Ligand type: Porphycene
Host protein: HasA
Anchoring strategy: Dative
Optimization: Chemical & genetic
Reaction: ---
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Metal Incorporated Horseradish Peroxidase (HRP) Catalyzed Oxidation of Resveratrol: Selective Dimerization or Decomposition

Pan, Y.

RSC Adv. 2013, 3, 22976, 10.1039/c3ra43784a

Horseradish Peroxidase (HRP) is a commercially available and prevalently used peroxidase with no specific substrate binding domain. However, after being incorporated with different metal cations, new catalytic functions were found in biomimetic oxidation of resveratrol. Based on the results of screening, Ca, Cu, Fe and Mn incorporated enzymes showed distinctive effects, either decomposition or dimerization products were observed.


Metal: Ca; Co; Mn; Ni; Zn
Ligand type: Undefined
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: Oxidation of resveratrol. Dimerisation product obtained.

Metal Ion Dependent Binding of Sulphonamide to Carbonic Anhydrase

Coleman, J.E.

Nature 1967, 214, 193-194, 10.1038/214193a0

ACETAZOLAMIDE (2-acetylamino-1,3,4-thiadiazole-5-sulphonamide, ‘Diamox’) is the most potent known inhibitor of the zinc enzyme carbonic anhydrase. This communication reports the direct demonstration that binding of acetazolamide to human carbonic anhydrase requires the presence of a metal ion at the active site and that binding depends on the species of divalent metal ion present. Zinc (II) and cobalt (II) ions are the only ions which induce the formation of very stable acetazolamide carbonic anhydrase complexes and are also the ions which most effectively catalyse the hydration of carbon dioxide and the hydrolysis of p-nitrophenyl acetate. Metal-binding monodentate ions, CN−, HS−, OCN−, and N3−, known as effective carbonic anhydrase inhibitors, compete for the acetazolamide binding site of the zinc enzyme.


Metal: Co
Ligand type: Amino acid
Host protein: Human carbonic anhydrase
Anchoring strategy: Metal substitution
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: CO2 hydration

Metal: Co
Ligand type: Amino acid
Host protein: Human carbonic anhydrase
Anchoring strategy: Metal substitution
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: Ester cleavage

Methane Generation and Reductive Debromination of Benzylic Position by Reconstituted Myoglobin Containing Nickel Tetradehydrocorrin as a Model of Methyl-coenzyme M Reductase

Hayashi, T; Oohora, K.

Inorg. Chem. 2020, 59, 11995-12004, 10.1021/acs.inorgchem.0c00901

Methyl-coenzyme M reductase (MCR), which contains the nickel hydrocorphinoid cofactor F430, is responsible for biological methane generation under anaerobic conditions via a reaction mechanism which has not been completely elucidated. In this work, myoglobin reconstituted with an artificial cofactor, nickel(I) tetradehydrocorrin (NiI(TDHC)), is used as a protein-based functional model for MCR. The reconstituted protein, rMb(NiI(TDHC)), is found to react with methyl donors such as methyl p-toluenesulfonate and trimethylsulfonium iodide with methane evolution observed in aqueous media containing dithionite. Moreover, rMb(NiI(TDHC)) is found to convert benzyl bromide derivatives to reductively debrominated products without homocoupling products. The reactivity increases in the order of primary > secondary > tertiary benzylic carbons, indicating steric effects on the reaction of the nickel center with the benzylic carbon in the initial step. In addition, Hammett plots using a series of para-substituted benzyl bromides exhibit enhancement of the reactivity with introduction of electron-withdrawing substituents, as shown by the positive slope against polar substituent constants. These results suggest a nucleophilic SN2-type reaction of the Ni(I) species with the benzylic carbon to provide an organonickel species as an intermediate. The reaction in D2O buffer at pD 7.0 causes a complete isotope shift of the product by +1 mass unit, supporting our proposal that protonation of the organonickel intermediate occurs during product formation. Although the turnover numbers are limited due to inactivation of the cofactor by side reactions, the present findings will contribute to elucidating the reaction mechanism of MCR-catalyzed methane generation from activated methyl sources and dehalogenation.


Metal: Ni
Ligand type: Tetradehydrocorrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Methane generation
Max TON: 1.61
ee: ---
PDB: ---
Notes: ---

Metal: Co
Ligand type: Tetradehydrocorrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical
Max TON: 0.25
ee: ---
PDB: ---
Notes: ---

Nature-Driven Photochemistry for Catalytic Solar Hydrogen Production: A Photosystem I-Transition Metal Catalyst Hybrid

Tiede, D.M.; Utschig, L.M.

J. Am. Chem. Soc. 2011, 133, 16334-16337, 10.1021/ja206012r

Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon fixation. Herein, we use one of Nature’s specialized energy-converters, the Photosystem I (PSI) protein, to drive hydrogen production from a synthetic molecular catalyst comprised of inexpensive, earth-abundant materials. PSI and a cobaloxime catalyst self-assemble, and the resultant complex rapidly produces hydrogen in aqueous solution upon exposure to visible light. This work establishes a strategy for enhancing photosynthetic efficiency for solar fuel production by augmenting natural photosynthetic systems with synthetically tunable abiotic catalysts.


Metal: Co
Ligand type: Oxime; Pyridine
Host protein: Photosystem I (PSI)
Anchoring strategy: Undefined
Optimization: ---
Reaction: H2 evolution
Max TON: 2080
ee: ---
PDB: ---
Notes: Recalculated TON

Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology

Alberto, R.; Ward, T.R.

Helv. Chim. Acta 2018, 101, e1800036, 10.1002/hlca.201800036

Photocatalytic hydrogen evolution by an artificial hydrogenase based on the biotin‐streptavidin technology is reported. A biotinylated cobalt pentapyridyl‐based hydrogen evolution catalyst (HEC) was incorporated into different mutants of streptavidin. Catalysis with [Ru(bpy)3]Cl2 as a photosensitizer (PS) and ascorbate as sacrificial electron donor (SED) at different pH values highlighted the impact of close lying amino acids that may act as a proton relay under the reaction conditions (Asp, Arg, Lys). In the presence of a close‐lying lysine residue, both, the rates were improved, and the reaction was initiated much faster. The X‐ray crystal structure of the artificial hydrogenase reveals a distance of 8.8 Å between the closest lying Co‐moieties. We thus suggest that the hydrogen evolution mechanism proceeds via a single Co centre. Our findings highlight that streptavidin is a versatile host protein for the assembly of artificial hydrogenases and their activity can be fine‐tuned via mutagenesis.


Metal: Co
Ligand type: Bipyridine; Pyridine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: H2 evolution
Max TON: >1800
ee: ---
PDB: 6FRY
Notes: ---

Protein Secondary-Shell Interactions Enhance the Photoinduced Hydrogen Production of Cobalt Protoporphyrin IX

Ghirlanda, G.

Chem. Commun. 2014, 50, 15852-15855, 10.1039/c4cc06700b

Hydrogen is an attractive fuel with potential for production scalability, provided that inexpensive, efficient molecular catalysts utilizing base metals can be developed for hydrogen production. Here we show for the first time that cobalt myoglobin (CoMyo) catalyzes hydrogen production in mild aerobic conditions with turnover number of 520 over 8 hours. Compared to free Co-protoporphyrin IX, incorporation into the myoglobin scaffold results in a 4-fold increase in photoinduced hydrogen production activity. Engineered variants in which specific histidine resides in proximity of the active site were mutated to alanine result in modulation of the catalytic activity, with the H64A/H97A mutant displaying activity 2.5-fold higher than wild type. Our results demonstrate that protein scaffolds can augment and modulate the intrinsic catalytic activity of molecular hydrogen production catalysts.


Metal: Co
Ligand type: Porphyrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Metal substitution
Optimization: Genetic
Reaction: H2 evolution
Max TON: 518
ee: ---
PDB: ---
Notes: ---

Reengineering Cyt b562 for Hydrogen Production: A Facile Route to Artificial Hydrogenases

Ghirlanda, G.

Biochim. Biophys. Acta, Bioenerg. 2016, 1857, 598-603, 10.1016/j.bbabio.2015.09.001

Bioinspired, protein-based molecular catalysts utilizing base metals at the active are emerging as a promising avenue to sustainable hydrogen production. The protein matrix modulates the intrinsic reactivity of organometallic active sites by tuning second-sphere and long-range interactions. Here, we show that swapping Co-Protoporphyrin IX for Fe-Protoporphyrin IX in cytochrome b562 results in an efficient catalyst for photoinduced proton reduction to molecular hydrogen. Further, the activity of wild type Co-cyt b562 can be modulated by a factor of 2.5 by exchanging the coordinating methionine with alanine or aspartic acid. The observed turnover numbers (TON) range between 125 and 305, and correlate well with the redox potential of the Co-cyt b562 mutants. The photosensitized system catalyzes proton reduction with high efficiency even under an aerobic atmosphere, implicating its use for biotechnological applications. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Metal: Co
Ligand type: Porphyrin
Host protein: Cytochrome b562
Anchoring strategy: Metal substitution
Optimization: Genetic
Reaction: H2 evolution
Max TON: 1450
ee: ---
PDB: ---
Notes: ---

Ru–protein–Co Biohybrids Designed for Solar Hydrogen Production: Understanding Electron Transfer Pathways Related to Photocatalytic Function

Utschig, L.M.

Chem. Sci. 2016, 7, 7068-7078, 10.1039/c6sc03121h

A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(II)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(III)–Fd–Co(I) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(I)–ApoFld–Co(I) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(II)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production.


Metal: Co
Ligand type: Oxime
Host protein: Ferredoxin (Fd)
Anchoring strategy: Dative
Optimization: Chemical
Reaction: H2 evolution
Max TON: 650
ee: ---
PDB: ---
Notes: Recalculated TON

Semisynthetic and Biomolecular Hydrogen Evolution Catalysts

Bren, K.L.

Inorg. Chem. 2016, 55, 467-477, 10.1021/acs.inorgchem.5b02054

There has been great interest in the development of stable, inexpensive, efficient catalysts capable of reducing aqueous protons to hydrogen (H2), an alternative to fossil fuels. While synthetic H2 evolution catalysts have been in development for decades, recently there has been great progress in engineering biomolecular catalysts and assemblies of synthetic catalysts and biomolecules. In this Forum Article, progress in engineering proteins to catalyze H2 evolution from water is discussed. The artificial enzymes described include assemblies of synthetic catalysts and photosynthetic proteins, proteins with cofactors replaced with synthetic catalysts, and derivatives of electron-transfer proteins. In addition, a new catalyst consisting of a thermophilic cobalt-substituted cytochrome c is reported. As an electrocatalyst, the cobalt cytochrome shows nearly quantitative Faradaic efficiency and excellent longevity with a turnover number of >270000.


Metal: Co
Ligand type: Porphyrin
Host protein: Cytochrome c552
Anchoring strategy: Metal substitution
Optimization: Genetic
Reaction: H2 evolution
Max TON: 27000
ee: ---
PDB: ---
Notes: Electrocatalysis

Stereoselective Sulfoxidation Catalyzed by Achiral Schiff Base Complexes in the Presence of Serum Albumin in Aqueous Media

Bian, H.-D.; Huang, F.-P.

Tetrahedron: Asymmetry 2017, 28, 1700-1707, 10.1016/j.tetasy.2017.10.021

Four coordination complexes ML derived from an achiral Schiff base ligand (H2L = 2,2′-[(1,2-ethanediyl)bis(nitrilopropylidyne)]bisphenol) have been synthesized and characterized. A method is described for the enantioselective oxidation of a series of aryl alkyl sulfides using the coordination complexes in the presence of serum albumins (SAs) in an aqueous medium at ambient temperature. The mixture of metal complexes with serum albumins is useful for inducing asymmetric catalysis. The complex, albumin source and substrate influence stereoselective sulfoxidation. At optimal pH with the appropriate oxidant, some of ML/SA systems are identified as very efficient catalysts, giving the corresponding sulfoxides in excellent chemical yield (up to 100%) and good enantioselectivity (up to 94% ee) in certain cases. UV–visible spectroscopic data provide evidence that stronger binding between the complex and serum albumin lead to higher enantioselectivity.


Metal: Co
Anchoring strategy: Undefined
Optimization: ---
Reaction: Sulfoxidation
Max TON: ~60
ee: 59
PDB: ---
Notes: ---