7 publications
-
Artificial Metalloenzymes for the Diastereoselective Reduction of NAD+ to NAD2H
-
Org. Biomol. Chem. 2015, 13, 357-360, 10.1039/c4ob02071e
Stereoselectively labelled isotopomers of NAD(P)H are highly relevant for mechanistic studies of enzymes which utilize them as redox equivalents.
Notes: ---
-
Asymmetric Hydrogenation with Antibody-Achiral Rhodium Complex
-
Org. Biomol. Chem. 2006, 4, 3571, 10.1039/B609242J
Monoclonal antibodies have been elicited against an achiral rhodium complex and this complex was used in the presence of a resultant antibody, 1G8, for the catalytic hydrogenation of 2-acetamidoacrylic acid to produce N-acetyl-L-alanine in high (>98%) enantiomeric excess.
Notes: ---
-
Carbonic Anhydrase II as Host Protein for the Creation of a Biocompatible Artificial Metathesase
-
Org. Biomol. Chem. 2015, 13, 5652-5655, 10.1039/c5ob00428d
We report an efficient artificial metathesase which combines an arylsulfonamide anchor within the protein scaffold human carbonic anhydrase II.
Metal: RuLigand type: CarbeneHost protein: Human carbonic anhydrase II (hCAII)Anchoring strategy: DativeOptimization: Chemical & geneticNotes: Ring closing metathesis. 28 turnovers obtained under physiological conditions within 4 hours.
-
Chemically Engineered Papain as Artificial Formate Dehydrogenase for NAD(P)H Regeneration
-
Org. Biomol. Chem. 2011, 9, 5720, 10.1039/c1ob05482a
Organometallic complexes of the general formula [(η6-arene)Ru(N⁁N)Cl]+ and [(η5-Cp*)Rh(N⁁N)Cl]+ where N⁁N is a 2,2′-dipyridylamine (DPA) derivative carrying a thiol-targeted maleimide group, 2,2′-bispyridyl (bpy), 1,10-phenanthroline (phen) or ethylenediamine (en) and arene is benzene, 2-chloro-N-[2-(phenyl)ethyl]acetamide or p-cymene were identified as catalysts for the stereoselective reduction of the enzyme cofactors NAD(P)+ into NAD(P)H with formate as a hydride donor. A thorough comparison of their effectiveness towards NAD+ (expressed as TOF) revealed that the RhIII complexes were much more potent catalysts than the RuII complexes. Within the RuII complex series, both the N⁁N and arene ligands forming the coordination sphere had a noticeable influence on the activity of the complexes. Covalent anchoring of the maleimide-functionalized RuII and RhIII complexes to the cysteine endoproteinase papain yielded hybrid metalloproteins, some of them displaying formate dehydrogenase activity with potentially interesting kinetic parameters.
Notes: TOF = 52.1 h-1 for NAD+
-
Designed Evolution of Artificial Metalloenzymes: Protein Catalysts Made to Order
Review -
Org. Biomol. Chem. 2007, 5, 1835, 10.1039/b702068f
Artificial metalloenzymes based on biotin–streptavidin technology, a “fusion” of chemistry and biology, illustrate how asymmetric catalysts can be improved and evolved using chemogenetic approaches.
Notes: ---
-
Metatheases: Artificial Metalloproteins for Olefin Metathesis
Review -
Org. Biomol. Chem. 2016, 14, 9174-9183, 10.1039/C6OB01475E
The incorporation of organometallic catalyst precursors in proteins results in so-called artificial metalloenzymes. The protein structure will control activity, selectivity and stability of the organometallic site in aqueous medium and allow non-natural reactions in biological settings. Grubbs-Hoveyda type ruthenium catalysts with an N-heterocyclic carbene (NHC) as ancillary ligand, known to be active in olefin metathesis, have recently been incorporated in various proteins. An overview of these artificial metalloproteins and their potential application in olefin metathesis is given.
Notes: ---
-
Selective Oxidation of Aromatic Sulfide Catalyzed by an Artificial Metalloenzyme: New Activity of Hemozymes
-
Org. Biomol. Chem. 2009, 7, 3208, 10.1039/b907534h
Two new artificial hemoproteins or “hemozymes”, obtained by non covalent insertion of Fe(III)-meso-tetra-p-carboxy- and -p-sulfonato-phenylporphyrin into xylanase A from Streptomyces lividans, were characterized by UV-visible spectroscopy and molecular modeling studies, and were found to catalyze the chemo- and stereoselective oxidation of thioanisole into the S sulfoxide, the best yield (85 ± 4%) and enantiomeric excess (40% ± 3%) being obtained with Fe(III)-meso-tetra-p-carboxyphenylporphyrin-Xln10A as catalyst in the presence of imidazole as co-catalyst.
Metal: FeLigand type: PorphyrinHost protein: Xylanase A (XynA)Anchoring strategy: SupramolecularOptimization: ---Notes: ---