11 publications
-
Aqueous Light Driven Hydrogen Production by a Ru–Ferredoxin–Co Biohybrid
-
Chem. Commun. 2015, 51, 10628-10631, 10.1039/c5cc03006d
Long-lived charge separation facilitates photocatalytic H2 production in a mini reaction center/catalyst complex.
Metal: CoLigand type: OximeHost protein: Ferredoxin (Fd)Anchoring strategy: DativeOptimization: ---Notes: Recalculated TON
-
Artificial Hydrogenases Based on Cobaloximes and Heme Oxygenase
-
ChemPlusChem 2016, 81, 1083-1089, 10.1002/cplu.201600218
The insertion of cobaloxime catalysts in the heme‐binding pocket of heme oxygenase (HO) yields artificial hydrogenases active for H2 evolution in neutral aqueous solutions. These novel biohybrids have been purified and characterized by using UV/visible and EPR spectroscopy. These analyses revealed the presence of two distinct binding conformations, thereby providing the cobaloxime with hydrophobic and hydrophilic environments, respectively. Quantum chemical/molecular mechanical docking calculations found open and closed conformations of the binding pocket owing to mobile amino acid residues. HO‐based biohybrids incorporating a {Co(dmgH)2} (dmgH2=dimethylglyoxime) catalytic center displayed up to threefold increased turnover numbers with respect to the cobaloxime alone or to analogous sperm whale myoglobin adducts. This study thus provides a strong basis for further improvement of such biohybrids, using well‐designed modifications of the second and outer coordination spheres, through site‐directed mutagenesis of the host protein.
Metal: CoLigand type: OximeHost protein: Heme oxygenase (HO)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloenzymes Based on Biotin-Avidin Technology for the Enantioselective Reduction of Ketones by Transfer Hydrogenation
-
Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 4683-4687, 10.1073/pnas.0409684102
Most physiological and biotechnological processes rely on molecular recognition between chiral (handed) molecules. Manmade homogeneous catalysts and enzymes offer complementary means for producing enantiopure (single-handed) compounds. As the subtle details that govern chiral discrimination are difficult to predict, improving the performance of such catalysts often relies on trial-and-error procedures. Homogeneous catalysts are optimized by chemical modification of the chiral environment around the metal center. Enzymes can be improved by modification of gene encoding the protein. Incorporation of a biotinylated organometallic catalyst into a host protein (avidin or streptavidin) affords versatile artificial metalloenzymes for the reduction of ketones by transfer hydrogenation. The boric acid·formate mixture was identified as a hydrogen source compatible with these artificial metalloenzymes. A combined chemo-genetic procedure allows us to optimize the activity and selectivity of these hybrid catalysts: up to 94% (R) enantiomeric excess for the reduction of p-methylacetophenone. These artificial metalloenzymes display features reminiscent of both homogeneous catalysts and enzymes.
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Transfer Hydrogenases Based on the Biotin-(Strept)avidin Technology: Fine Tuning the Selectivity by Saturation Mutagenesis of the Host Protein
-
J. Am. Chem. Soc. 2006, 128, 8320-8328, 10.1021/ja061580o
Incorporation of biotinylated racemic three-legged d6-piano stool complexes in streptavidin yields enantioselective transfer hydrogenation artificial metalloenzymes for the reduction of ketones. Having identified the most promising organometallic catalyst precursors in the presence of wild-type streptavidin, fine-tuning of the selectivity is achieved by saturation mutagenesis at position S112. This choice for the genetic optimization site is suggested by docking studies which reveal that this position lies closest to the biotinylated metal upon incorporation into streptavidin. For aromatic ketones, the reaction proceeds smoothly to afford the corresponding enantioenriched alcohols in up to 97% ee (R) or 70% (S). On the basis of these results, we suggest that the enantioselection is mostly dictated by CH/π interactions between the substrate and the η6-bound arene. However, these enantiodiscriminating interactions can be outweighed in the presence of cationic residues at position S112 to afford the opposite enantiomers of the product.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines
-
Angew. Chem. Int. Ed. 2011, 50, 3026-3029, 10.1002/anie.201007820
Man‐made activity: Introduction of a biotinylated iridium piano stool complex within streptavidin affords an artificial imine reductase (see scheme). Saturation mutagenesis allowed optimization of the activity and the enantioselectivity of this metalloenzyme, and its X‐ray structure suggests that a nearby lysine residue acts as a proton source during the transfer hydrogenation.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Catalysis Without a Headache: Modification of Ibuprofen for the Design of Artificial Metalloenzyme for Sulfide Oxidation
-
J. Mol. Catal. A: Chem. 2016, 416, 20-28, 10.1016/j.molcata.2016.02.015
A new artificial oxidase has been developed for selective transformation of thioanisole. The catalytic activity of an iron inorganic complex, FeLibu, embedded in a transport protein NikA has been investigated in aqueous media. High efficiency (up to 1367 t), frequency 459 TON min−1 and selectivity (up to 69%) make this easy to use catalytic system an asset for a sustainable chemistry.
Metal: FeLigand type: BPHMENHost protein: Human serum albumin (HSA)Anchoring strategy: SupramolecularOptimization: ---Notes: ---
-
Cobaloxime-Based Artificial Hydrogenase
-
Inorg. Chem. 2014, 53, 8071-8082, 10.1021/ic501014c
Cobaloximes are popular H2 evolution molecular catalysts but have so far mainly been studied in nonaqueous conditions. We show here that they are also valuable for the design of artificial hydrogenases for application in neutral aqueous solutions and report on the preparation of two well-defined biohybrid species via the binding of two cobaloxime moieties, {Co(dmgH)2} and {Co(dmgBF2)2} (dmgH2 = dimethylglyoxime), to apo Sperm-whale myoglobin (SwMb). All spectroscopic data confirm that the cobaloxime moieties are inserted within the binding pocket of the SwMb protein and are coordinated to a histidine residue in the axial position of the cobalt complex, resulting in thermodynamically stable complexes. Quantum chemical/molecular mechanical docking calculations indicated a coordination preference for His93 over the other histidine residue (His64) present in the vicinity. Interestingly, the redox activity of the cobalt centers is retained in both biohybrids, which provides them with the catalytic activity for H2 evolution in near-neutral aqueous conditions.
Metal: CoLigand type: OximeHost protein: Myoglobin (Mb)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: Sperm whale myoglobin
-
Improving the Enantioselectivity of Artificial Transfer Hydrogenases Based on the Biotin–Streptavidin Technology by Combinations of Point Mutations
-
Inorg. Chim. Acta 2010, 363, 601-604, 10.1016/j.ica.2009.02.001
Artificial metalloenzymes based on the incorporation of biotinylated ruthenium piano–stool complexes within streptavidin can be readily optimized by chemical or genetic means. We performed genetic modifications of such artificial metalloenzymes for the transfer hydrogenation of aromatic ketones, by combining targeted point mutations of the host protein. Upon using the P64G-L124V double mutant of streptavidin in combination with the [η6-(p-cymene)Ru(Biot-p-L)Cl] complex, the enantioselectivity can be increased up to 98% ee (R) for the reduction of p-methylacetophenone, which is the highest selectivity obtained up to date with an artificial transfer hydrogenase.
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Nature-Driven Photochemistry for Catalytic Solar Hydrogen Production: A Photosystem I-Transition Metal Catalyst Hybrid
-
J. Am. Chem. Soc. 2011, 133, 16334-16337, 10.1021/ja206012r
Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon fixation. Herein, we use one of Nature’s specialized energy-converters, the Photosystem I (PSI) protein, to drive hydrogen production from a synthetic molecular catalyst comprised of inexpensive, earth-abundant materials. PSI and a cobaloxime catalyst self-assemble, and the resultant complex rapidly produces hydrogen in aqueous solution upon exposure to visible light. This work establishes a strategy for enhancing photosynthetic efficiency for solar fuel production by augmenting natural photosynthetic systems with synthetically tunable abiotic catalysts.
Notes: Recalculated TON
-
Ru–protein–Co Biohybrids Designed for Solar Hydrogen Production: Understanding Electron Transfer Pathways Related to Photocatalytic Function
-
Chem. Sci. 2016, 7, 7068-7078, 10.1039/c6sc03121h
A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(II)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(III)–Fd–Co(I) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(I)–ApoFld–Co(I) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(II)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production.
Metal: CoLigand type: OximeHost protein: Ferredoxin (Fd)Anchoring strategy: DativeOptimization: ChemicalNotes: Recalculated TON
-
X-Ray Structure and Designed Evolution of an Artificial Transfer Hydrogenase
-
Angew. Chem. Int. Ed. 2008, 47, 1400-1404, 10.1002/anie.200704865
A structure is worth a thousand words: Guided by the X‐ray structure of an S‐selective artificial transfer hydrogenase, designed evolution was used to optimize the selectivity of hybrid catalysts. Fine‐tuning of the second coordination sphere of the ruthenium center (see picture, orange sphere) by introduction of two point mutations allowed the identification of selective artificial transfer hydrogenases for the reduction of dialkyl ketones.
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---