4 publications

4 publications

A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell

Fussenegger, M.; Matile, S.; Ward, T. R.

Nat. Commun., 2018, 10.1038/s41467-018-04440-0

Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.


Metal: Ru
Ligand type: Cp; Quinoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Deallylation
Max TON: 33
ee: ---
PDB: ---
Notes: ---

A Whole Cell E. coli Display Platform for Artificial Metalloenzymes: Poly(phenylacetylene) Production with a Rhodium–Nitrobindin Metalloprotein

Schwaneberg, U.

ACS Catal., 2018, 10.1021/acscatal.7b04369


Metal: Rh
Ligand type: COD; Cp
Host protein: Nitrobindin variant NB4
Anchoring strategy: Cystein-maleimide
Optimization: ---
Max TON: 3046
ee: ---
PDB: ---
Notes: Calculated in vivo TON assuming 12800 metalloenzymes per E. coli cell

E. coli Surface Display of Streptavidin for Directed Evolution of an Allylic Deallylase

Ward, T. R.

Chem. Sci., 2018, 10.1039/c8sc00484f


Metal: Ru
Ligand type: Cp; Quinoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Deallylation
Max TON: 148
ee: ---
PDB: 6FH8
Notes: ---

On-Cell Catalysis by Surface Engineering of Live Cells with an Artificial Metalloenzyme

Gademann, K.

Commun. Chem., 2018, 10.1038/s42004-018-0087-y


Metal: Ru
Ligand type: Cp; Quinoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Deallylation
Max TON: 80
ee: ---
PDB: ---
Notes: Catalysis on algae surface