Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

24 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. clearAngew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A Chaperonin as Protein Nanoreactor for Atom-Transfer Radical Polymerization

The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom‐transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of N‐isopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein–catalyst conjugate only yielded polymers with PDIs above 1.84.

Metal:

Cu

Host protein:

Thermosome (THS)

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Polymerization

Max TON:

---

ee:

---

PDB:

---

Notes:

Non-ROMP

A De Novo Designed Metalloenzyme for the Hydration of CO2

Protein design will ultimately allow for the creation of artificial enzymes with novel functions and unprecedented stability. To test our current mastery of nature’s approach to catalysis, a ZnII metalloenzyme was prepared using de novo design. α3DH3 folds into a stable single‐stranded three‐helix bundle and binds ZnII with high affinity using His3O coordination. The resulting metalloenzyme catalyzes the hydration of CO2 better than any small molecule model of carbonic anhydrase and with an efficiency within 1400‐fold of the fastest carbonic anhydrase isoform, CAII, and 11‐fold of CAIII.

Metal:

Zn

Ligand type:

Amino acid

Host protein:

α3D peptide

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

kcat/KM ≈ 3.8*104 M-1*s-1

A Designed Functional Metalloenzyme that Reduces O2 to H2O with Over One Thousand Turnovers

Rational design of functional enzymes with a high number of turnovers is a challenge, especially those with a complex active site, such as respiratory oxidases. Introducing two His and one Tyr residues into myoglobin resulted in enzymes that reduce O2 to H2O with more than 1000 turnovers (red line, see scheme) and minimal release of reactive oxygen species. The positioning of the Tyr residue is critical for activity.

Metal:

Cu

Ligand type:

Amino acid

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

1056

ee:

---

PDB:

4FWX

Notes:

Sperm whale myoglobin

An Artificial Heme Enzyme for Cyclopropanation Reactions

Metal:

Fe

Ligand type:

Protoporphyrin IX

Host protein:

LmrR

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

449

ee:

51

PDB:

6FUU

Notes:

---

An Artificial Metalloenzyme: Creation of a Designed Copper Binding Site in a Thermostable Protein

Guided by nature: A designed binding site comprising the His/His/Asp motif for CuII complexation has been constructed in a robust protein by site‐specific mutagenesis (see picture). The artificial metalloenzyme catalyzes an enantioselective Diels–Alder reaction.

Metal:

Cu

Ligand type:

Amino acid

Host protein:

tHisF

Anchoring strategy:

Dative

Optimization:

Genetic

Max TON:

6.7

ee:

46

PDB:

---

Notes:

---

An Artificial Oxygenase Built from Scratch: Substrate Binding Site Identified Using a Docking Approach

The substrate for an artificial iron monooxygenase was selected by using docking calculations. The high catalytic efficiency of the reported enzyme for sulfide oxidation was directly correlated to the predicted substrate binding mode in the protein cavity, thus illustrating the synergetic effect of the substrate binding site, protein scaffold, and catalytic site.

Metal:

Fe

Ligand type:

BPMCN; BPMEN

Host protein:

NikA

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

199

ee:

≤5

PDB:

---

Notes:

---

Artificial Metalloenzymes for Asymmetric Allylic Alkylation on the Basis of the Biotin–Avidin Technology

Metal:

Pd

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Allylic alkylation

Max TON:

10

ee:

93

PDB:

---

Notes:

---

Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4000

ee:

96

PDB:

3PK2

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

94

ee:

52

PDB:

3PK2

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

97

ee:

22

PDB:

3PK2

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

76

ee:

12

PDB:

3PK2

Notes:

---

Carbene in Cupredoxin Protein Scaffolds: Replacement of a Histidine Ligand in the Active Site Substantially Alters Copper Redox Properties

Metal:

Cu

Host protein:

Azurin

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Reaction:

Electron transfer

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Copper–Phthalocyanine Conjugates of Serum Albumins as Enantioselective Catalysts in Diels–Alder Reactions

Metal:

Cu

Ligand type:

Phthalocyanine

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Max TON:

45.5

ee:

98

PDB:

---

Notes:

---

Cross-Regulation of an Artificial Metalloenzyme

Metal:

Ir

Ligand type:

Cp*; Phenanthroline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

96

ee:

---

PDB:

---

Notes:

Cross-regulated reduction of the antibiotic enrofloxacin by an ArM.

Directed Evolution of an Artificial Imine Reductase

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

380

ee:

95

PDB:

6ESS

Notes:

Salsolidine formation; Sav mutant S112A-N118P-K121A-S122M: (R)-selective

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

220

ee:

85

PDB:

6ESS

Notes:

Salsolidine formation; Sav mutant S112R-N118P-K121A-S122M-L124Y: (S)-selective

Directed Evolution of Iridium-Substituted Myoglobin Affords Versatile Artificial Metalloenzymes for Enantioselective C-C Bond-Forming Reactions

Review

Notes:

---

Enantioselective Artificial Metalloenzymes by Creation of a Novel Active Site at the Protein Dimer Interface

Metal:

Cu

Ligand type:

Bipyridine; Phenanthroline

Host protein:

LmrR

Anchoring strategy:

Covalent

Optimization:

Genetic

Max TON:

32.7

ee:

97

PDB:

3F8B

Notes:

---

Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes

Metal:

Rh

Ligand type:

Acac; Diphenylphosphine

Anchoring strategy:

Cystein-maleimide

Optimization:

Chemical & genetic

Reaction:

Hydroformylation

Max TON:

409

ee:

---

PDB:

---

Notes:

Selectivity for the linear product over the branched product

Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions

Review

Notes:

---

Metal-Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold

Review

Notes:

---

OsO4·Streptavidin: A Tunable Hybrid Catalyst for the Enantioselective cis-Dihydroxylation of Olefins

Metal:

Os

Ligand type:

Undefined

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Dihydroxylation

Max TON:

16

ee:

97

PDB:

---

Notes:

---

Preparation of Artificial Metalloenzymes by Insertion of Chromium(III) Schiff Base Complexes into apo-Myoglobin Mutants

Metal:

Cr

Ligand type:

Salophen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Significant Increase of Oxidase Activity through the Genetic Incorporation of a Tyrosine–Histidine Cross-Link in a Myoglobin Model of Heme–Copper Oxidase

Metal:

Cu

Ligand type:

Amino acid

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

1100

ee:

---

PDB:

---

Notes:

Sperm whale myoglobin

Tailoring the Active Site of Chemzymes by Using a Chemogenetic-Optimization Procedure: Towards Substrate-Specific Artificial Hydrogenases Based on the Biotin–Avidin Technology

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

---

Towards Evolution of Artificial Metalloenzymes - A Protein Engineer’s Perspective

Review

Notes:

---

Upregulation of an Artificial Zymogen by Proteolysis

Metal:

Ir

Ligand type:

Cp*; Tripeptide

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

2000

ee:

73

PDB:

---

Notes:

---

X-Ray Structure and Designed Evolution of an Artificial Transfer Hydrogenase

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

100

ee:

92

PDB:

2QCB

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

97

ee:

96

PDB:

2QCB

Notes:

---