2 publications

2 publications

A Designed Heme-[4Fe-4S] Metalloenzyme Catalyzes Sulfite Reduction like the Native Enzyme

Lu, Y.

Science 2018, 361, 1098-1101, 10.1126/science.aat8474

Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved—through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites—to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.


Metal: Fe
Host protein: Cytochrome c peroxidase
Anchoring strategy: Dative
Optimization: Chemical & genetic
Reaction: Sulfite reduction
Max TON: ---
ee: ---
PDB: ---
Notes: Designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase

An Evolutionary Path to Altered Cofactor Specificity in a Metalloenzyme

Kehl-Fie, T.E.; Waldron, K.J.

Nat. Commun. 2020, 11, 10.1038/s41467-020-16478-0

AbstractAlmost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (SOD) family exemplifies this deficit, as the specific metal used by any family member cannot be predicted. Biochemical, structural and paramagnetic analysis of two evolutionarily related SODs with different metal specificity produced by the pathogenic bacterium Staphylococcus aureus identifies two positions that control metal specificity. These residues make no direct contacts with the metal-coordinating ligands but control the metal’s redox properties, demonstrating that subtle architectural changes can dramatically alter metal utilization. Introducing these mutations into S. aureus alters the ability of the bacterium to resist superoxide stress when metal starved by the host, revealing that small changes in metal-dependent activity can drive the evolution of metalloenzymes with new cofactor specificity.


Metal: Fe; Mn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Metal substitution
Max TON: ---
ee: ---
PDB: ---
Notes: PDB: 6EX3, 6EX4, 6EX5, 6QV8, 6QV9