62 publications

62 publications

Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation

Renaud, J.-L.; Ward, T. R.

Catal. Lett., 2016, 10.1007/s10562-015-1681-6

We report on the synthesis of biotinylated (cyclopentadienone)iron tricarbonyl complexes, the in situ generation of the corresponding streptavidin conjugates and their application in asymmetric hydrogenation of imines and ketones.


Metal: Fe
Ligand type: CO; Cyclopentadienone
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Hydrogenation
Max TON: 20
ee: 34
PDB: ---
Notes: ---

Active Site Topology of Artificial Peroxidase-like Hemoproteins Based on Antibodies Constructed from a Specifically Designed Ortho-carboxy-substituted Tetraarylporphyrin

Mahy, J.-P.

Eur. J. Biochem., 1998, 10.1046/j.1432-1327.1998.2570121.x

The topology of the binding site has been studied for two monoclonal antibodies 13G10 and 14H7, elicited against iron(III)‐α,α,α,β‐meso‐tetrakis(ortho‐carboxyphenyl)porphyrin {α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin]}, and which exhibit in the presence of this α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] cofactor a peroxidase activity. A comparison of the dissociation constants of the complexes of 13G10 and 14H7 with various tetra‐aryl‐substituted porphyrin has shown that : (a) the central iron(III) atom of α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] is not recognized by either of the two antibodies; and (b) the ortho‐carboxylate substituents of the meso‐phenyl rings of α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] are essential for the recognition of the porphyrin by 13G10 and 14H7. Measurement of the dissociation constants for the complexes of 13G10 and 14H7 with the four atropoisomers of (o‐COOHPh)4‐porphyrinH2 as well as mono‐ and di‐ortho‐carboxyphenyl‐substituted porphyrins suggests that the three carboxylates in the α, α, β position are recognized by both 13G10 and 14H7 with the two in the α, β positions more strongly bound to the antibody protein. Accordingly, the topology of the active site of 13G10 and 14H7 has roughly two‐thirds of the α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] cofactor inserted into the binding site of the antibodies, with one of the aryl ring remaining outside. Three of the carboxylates are bound to the protein but no amino acid residue acts as an axial ligand to the iron atom. Chemical modification of lysine, histidine, tryptophan and arginine residues has shown that only modification of arginine residues causes a decrease in both the binding of α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] and the peroxidase activity of both antibodies. Consequently, at least one of the carboxylates of the hapten is bound to an arginine residue and no amino acids such as lysine, histidine or tryptophan participate in the catalysis of the heterolytic cleavage of the O‐O bond of H2O2. In addition, the amino acid sequence of both antibodies not only reveals the presence of arginine residues, which could be those involved in the binding of the carboxylates of the hapten, but also the presence of several amino acids in the complementary determining regions which could bind other carboxylates through a network of H bonds.


Metal: Fe
Ligand type: ---
Host protein: Antibody 13G10 / 14H7
Anchoring strategy: Antibody
Optimization: Chemical & genetic
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

A Designed Heme-[4Fe-4S] Metalloenzyme Catalyzes Sulfite Reduction like the Native Enzyme

Lu, Y.

Science, 2018, 10.1126/science.aat8474

Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved—through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites—to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.


Metal: Fe
Host protein: Cytochrome c peroxidase
Anchoring strategy: Dative
Optimization: Chemical & genetic
Reaction: Sulfite reduction
Max TON: ---
ee: ---
PDB: ---
Notes: Designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase

A Hydrogenase Model System Based on the Sequence of Cytochrome c: Photochemical Hydrogen Evolution in Aqueous Media

Hayashi, T

Chem. Commun., 2011, 10.1039/c1cc11157d

The diiron carbonyl cluster is held by a native CXXC motif, which includes Cys14 and Cys17, in the cytochrome c sequence. It is found that the diiron carbonyl complex works well as a catalyst for H2 evolution. It has a TON of ∼80 over 2 h at pH 4.7 in the presence of a Ru-photosensitizer and ascorbate as a sacrificial reagent in aqueous media.


Metal: Fe
Ligand type: Carbonyl
Host protein: Cytochrome c
Anchoring strategy: Dative
Optimization: ---
Reaction: H2 evolution
Max TON: 82
ee: ---
PDB: ---
Notes: Horse heart cytochrome C

Alteration of the Oxygen-Dependent Reactivity of De Novo Due Ferri Proteins

DeGrado, W. F.

Nat. Chem., 2012, 10.1038/NCHEM.1454

De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N-hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 106-fold increase in the relative rate between the arylamine N-hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites.


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferro 1
Anchoring strategy: Dative
Optimization: Genetic
Reaction: N-Hydroxylation
Max TON: ---
ee: ---
PDB: 2LFD
Notes: ---

A Metal Ion Regulated Artificial Metalloenzyme

Roelfes, G.

Dalton Trans., 2017, 10.1039/C7DT00533D

Regulation of enzyme activity is essential in living cells. The rapidly increasing number of designer enzymes with new-to-nature activities makes it necessary to develop novel strategies for controlling their catalytic activity. Here we present the development of a metal ion regulated artificial metalloenzyme created by combining two anchoring strategies, covalent and supramolecular, for introducing a regulatory and a catalytic site, respectively. This artificial metalloenzyme is activated in the presence of Fe2+ ions, but only marginally in the presence of Zn2+.


Metal: Fe
Ligand type: Bypyridine
Host protein: LmrR
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 14
ee: 75
PDB: ---
Notes: ---

Metal: Zn
Ligand type: Bypyridine
Host protein: LmrR
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 6
ee: 80
PDB: ---
Notes: ---

An Artificial Di-Iron Oxo-Orotein with Phenol Oxidase Activity

DeGrado, W. F.; Lombardi, A.

Nat. Chem. Biol., 2009, 10.1038/nchembio.257

Here we report the de novo design and NMR structure of a four-helical bundle di-iron protein with phenol oxidase activity. The introduction of the cofactor-binding and phenol-binding sites required the incorporation of residues that were detrimental to the free energy of folding of the protein. Sufficient stability was, however, obtained by optimizing the sequence of a loop distant from the active site.


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferro 1
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Alcohol oxidation
Max TON: >50
ee: ---
PDB: 2KIK
Notes: kcat/KM ≈ 1380 M-1*min-1

Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferro 1
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Amine oxidation
Max TON: ---
ee: ---
PDB: 2KIK
Notes: kcat/KM ≈ 83 M-1*min-1

An Artificial Enzyme Made by Covalent Grafting of an FeII Complex into β-Lactoglobulin: Molecular Chemistry, Oxidation Catalysis, and Reaction-Intermediate Monitoring in a Protein

Banse, F.; Mahy, J.-P.

Chem. - Eur. J., 2015, 10.1002/chem.201501755

An artificial metalloenzyme based on the covalent grafting of a nonheme FeII polyazadentate complex into bovine β‐lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the FeII catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin‐state conversion of the initial high spin (S=2) FeII complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center’s first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2O2 reveals the generation of a high spin (S=5/2) FeIII(η2‐O2) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate.


Metal: Fe
Ligand type: Poly-pyridine
Host protein: ß-lactoglobulin
Anchoring strategy: Covalent
Optimization: ---
Reaction: Sulfoxidation
Max TON: 5.6
ee: 20
PDB: ---
Notes: ---

An Artificial Heme Enzyme for Cyclopropanation Reactions

Roelfes, G.

Angew. Chem., Int. Ed., 2018, 10.1002/anie.201802946


Metal: Fe
Ligand type: Protoporphyrin IX
Host protein: LmrR
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Cyclopropanation
Max TON: 449
ee: 51
PDB: 6FUU
Notes: ---

An Artificial Oxygenase Built from Scratch: Substrate Binding Site Identified Using a Docking Approach

Cavazza, C.; Ménage, S.

Angew. Chem., Int. Ed., 2014, 10.1002/anie.201209021

The substrate for an artificial iron monooxygenase was selected by using docking calculations. The high catalytic efficiency of the reported enzyme for sulfide oxidation was directly correlated to the predicted substrate binding mode in the protein cavity, thus illustrating the synergetic effect of the substrate binding site, protein scaffold, and catalytic site.


Metal: Fe
Ligand type: BPMCN; BPMEN
Host protein: NikA
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 199
ee: ≤5
PDB: ---
Notes: ---

A Noncanonical Proximal Heme Ligand Affords an Efficient Peroxidase in a Globin Fold

Green, A. P.; Hilvert, D.

J. Am. Chem. Soc., 2018, 10.1021/jacs.7b12621


Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Oxidation
Max TON: ~1650
ee: ---
PDB: 5OJ9
Notes: Oxidation of amplex red

Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials

Lombardi, A.; Nastri, F.

Int. J. Mol. Sci., 2018, 10.3390/ijms19102896


Metal: Fe
Ligand type: Amino acid; Porphyrin
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: Immobilization of the ArM on gold surfaces via a lipoic acid anchor.

Artificial Metalloenzymes as Catalysts for Oxidative Lignin Degradation

Jarvis, A. G.

ACS Sustainable Chem. Eng., 2018, 10.1021/acssuschemeng.8b03568


Metal: Fe
Anchoring strategy: Cystein-maleimide
Optimization: Chemical & genetic
Reaction: Lignin oxidation
Max TON: 20
ee: ---
PDB: ---
Notes: Reaction performed with a lignin model compound and hydrogen peroxide as oxidizing agent

Artificial Peroxidase-Like Hemoproteins Based on Antibodies Constructed from a Specifically Designed Ortho-Carboxy Substituted Tetraarylporphyrin Hapten and Exhibiting a High Affinity for Iron-Porphyrins

Mahy, J.-P.

FEBS Lett., 1996, 10.1016/0014-5793(96)01006-X


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 13G10
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: kcat/KM = 105 M-1 * s-1

A Structural View of Synthetic Cofactor Integration into [FeFe]-Hydrogenases

Apfel, U.-P.; Happe, T.; Kurisu, G.

Chem. Sci., 2016, 10.1039/C5SC03397G


Metal: Fe
Ligand type: CN; CO; Dithiolate
Anchoring strategy: Dative
Optimization: Chemical
Reaction: H2 evolution
Max TON: ---
ee: ---
PDB: 4XDC
Notes: H2 evolution activity of the ArM: 2874 (mmol H2)*min-1*(mg protein)-1.

Biosynthesis of a Site-Specific DNA Cleaving Protein

Schultz, P. G.

J. Am. Chem. Soc., 2008, 10.1021/ja804653f


Metal: Cu
Ligand type: Bipyridine
Anchoring strategy: ---
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: ---
Notes: Catabolite activator protein from E. coli

Metal: Fe
Ligand type: Bipyridine
Anchoring strategy: ---
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: ---
Notes: Catabolite activator protein from E. coli

Capture and Characterization of a Reactive Haem– Carbenoid Complex in an Artificial Metalloenzyme

Hilvert, D.

Nat. Catal., 2018, 10.1038/s41929-018-0105-6


Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: ---
Optimization: Genetic
Reaction: Cyclopropanation
Max TON: 1000
ee: 99
PDB: 6F17
Notes: Structure of the Mb*(NMH) haem-iron complex

Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: ---
Optimization: Genetic
Reaction: Cyclopropanation
Max TON: 1000
ee: 99
PDB: 6G5B
Notes: Structure of the Mb*(NMH) haem-iron–carbenoid complex

Catalysis Without a Headache: Modification of Ibuprofen for the Design of Artificial Metalloenzyme for Sulfide Oxidation

Ménage, S.

J. Mol. Catal. A: Chem., 2016, 10.1016/j.molcata.2016.02.015


Metal: Fe
Ligand type: BPHMEN
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 1367
ee: ---
PDB: ---
Notes: ---

Catalytic Cyclopropanation by Myoglobin Reconstituted with Iron Porphycene: Acceleration of Catalysis due to Rapid Formation of the Carbene Species

Hasegawa, J.-Y.; Lehnert, N.

J. Am. Chem. Soc., 2017, 10.1021/jacs.7b10154


Metal: Fe
Ligand type: Amino acid; Porphycene
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: ---
Reaction: Cyclopropanation
Max TON: ---
ee: ---
PDB: ---
Notes: Cyclopropanation of styrene with ethyl diazoacetate: kcat/KM = 1.3 mM-1 * s-1, trans/cis = 99:1

Chalcogenide Substitution in the [2Fe] Cluster of [FeFe]-Hydrogenases Conserves High Enzymatic Activity

Apfel, U.-P.; Happe, T.

Dalton Trans., 2017, 10.1039/C7DT03785F


Metal: Fe
Ligand type: CN; CO; Diselenolate
Anchoring strategy: Dative
Optimization: Chemical
Reaction: H2 evolution
Max TON: ---
ee: ---
PDB: 5OEF
Notes: ---

Construction and In Vivo Assembly of a Catalytically Proficient and Hyperthermostable De Novo Enzyme

Anderson, J. L. R.

Nat. Commun., 2017, 10.1038/s41467-017-00541-4


Metal: Fe
Ligand type: Porphyrin
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: Oxidation of 2,2′-azino-bis(3-ethylbenzothiazo-line-6-sulfonic acid (ABTS)

Coordination Chemistry of Iron(III)-Porphyrin-Antibody Complexes Influence on the Peroxidase Activity of the Axial Coordination of an Imidazole on the Iron Atom

Mahy, J.-P.

Eur. J. Biochem., 2002, 10.1046/j.0014-2956.2001.02670.x


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 13G10
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: kcat/KM = 15200 M-1 * s-1

Coordination Chemistry Studies and Peroxidase Activity of a New Artificial Metalloenzyme Built by the “Trojan Horse” Strategy

Mahy, J.-P.

J. Mol. Catal. A: Chem., 2010, 10.1016/j.molcata.2009.10.016


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 7A3
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: k1 = 574 M-1 * min-1

Cross-Linked Artificial Enzyme Crystals as Heterogeneous Catalysts for Oxidation Reactions

Cavazza, C.; Ménage, S.

J. Am. Chem. Soc., 2017, 10.1021/jacs.7b09343


Metal: Fe
Ligand type: ---
Host protein: NikA
Anchoring strategy: Supramolecular
Optimization: Chemical
Max TON: 28000
ee: ---
PDB: 5ON0
Notes: Cross-Linked Enzyme Crystals (CLEC) as catalysts.

Metal: Fe
Ligand type: ---
Host protein: NikA
Anchoring strategy: Supramolecular
Optimization: Chemical
Max TON: 5900
ee: ---
PDB: 5ON0
Notes: Cross-Linked Enzyme Crystals (CLEC) as catalysts.

Crystal Structure and Peroxidase Activity of Myoglobin Reconstituted with Iron Porphycene

Inorg. Chem., 2006, 10.1021/ic061130x


Metal: Fe
Ligand type: Porphycene
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: ---
Max TON: ---
ee: ---
PDB: 1MBI
Notes: ---

Crystal Structure of Two Anti-Porphyrin Antibodies with Peroxidase Activity

Golinelli-Pimpaneau, B.

Plos ONE, 2012, 10.1371/journal.pone.0051128


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 13G10
Anchoring strategy: Antibody
Optimization: Chemical & genetic
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: 4AMK
Notes: ---

Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 14H7
Anchoring strategy: Antibody
Optimization: Chemical & genetic
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: 4AT6
Notes: ---

De Novo Design of Catalytic Proteins

DeGrado, W. F.

Proc. Natl. Acad. Sci. U. S. A., 2004, 10.1073/pnas.0404387101


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferro 1
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Alcohol oxidation
Max TON: >100
ee: ---
PDB: ---
Notes: kcat/KM ≈ 1540 M-1*min-1

Design of Metal Cofactors Activated by a Protein–Protein Electron Transfer System

Ueno, T.

Proc. Natl. Acad. Sci. U. S. A., 2006, 10.1073/pnas.0510968103


Metal: Fe
Ligand type: Salophen
Host protein: Heme oxygenase (HO)
Anchoring strategy: Reconstitution
Optimization: Chemical
Reaction: O2 reduction
Max TON: ---
ee: ---
PDB: 1WZD
Notes: ---

Enzyme stabilization via computationally guided protein stapling

Fasan, R.; Khare, S. D.

Proc. Natl. Acad. Sci. U. S. A., 2017, 10.1073/pnas.1708907114


Metal: Fe
Ligand type: Porphyrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Cyclopropanation
Max TON: 4740
ee: 99.2
PDB: ---
Notes: Stapling of protein via thioether bond formation between the noncanonical amino acid O-2-bromoethyl tyrosine and cysteine

Flavohemoglobin: A Semisynthetic Hydroxylase Acting in the Absence of Reductase

Kaiser, E. T.

J. Am. Chem. Soc., 1987, 10.1021/ja00236a062


Metal: Fe
Ligand type: Porphyrin
Host protein: Hemoglobin
Anchoring strategy: ---
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: ---