6 publications

6 publications

Active Site Topology of Artificial Peroxidase-like Hemoproteins Based on Antibodies Constructed from a Specifically Designed Ortho-carboxy-substituted Tetraarylporphyrin

Mahy, J.-P.

Eur. J. Biochem. 1998, 257, 121-130, 10.1046/j.1432-1327.1998.2570121.x

The topology of the binding site has been studied for two monoclonal antibodies 13G10 and 14H7, elicited against iron(III)‐α,α,α,β‐meso‐tetrakis(ortho‐carboxyphenyl)porphyrin {α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin]}, and which exhibit in the presence of this α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] cofactor a peroxidase activity. A comparison of the dissociation constants of the complexes of 13G10 and 14H7 with various tetra‐aryl‐substituted porphyrin has shown that : (a) the central iron(III) atom of α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] is not recognized by either of the two antibodies; and (b) the ortho‐carboxylate substituents of the meso‐phenyl rings of α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] are essential for the recognition of the porphyrin by 13G10 and 14H7. Measurement of the dissociation constants for the complexes of 13G10 and 14H7 with the four atropoisomers of (o‐COOHPh)4‐porphyrinH2 as well as mono‐ and di‐ortho‐carboxyphenyl‐substituted porphyrins suggests that the three carboxylates in the α, α, β position are recognized by both 13G10 and 14H7 with the two in the α, β positions more strongly bound to the antibody protein. Accordingly, the topology of the active site of 13G10 and 14H7 has roughly two‐thirds of the α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] cofactor inserted into the binding site of the antibodies, with one of the aryl ring remaining outside. Three of the carboxylates are bound to the protein but no amino acid residue acts as an axial ligand to the iron atom. Chemical modification of lysine, histidine, tryptophan and arginine residues has shown that only modification of arginine residues causes a decrease in both the binding of α,α,α,β‐Fe[(o‐COOHPh)4‐porphyrin] and the peroxidase activity of both antibodies. Consequently, at least one of the carboxylates of the hapten is bound to an arginine residue and no amino acids such as lysine, histidine or tryptophan participate in the catalysis of the heterolytic cleavage of the O‐O bond of H2O2. In addition, the amino acid sequence of both antibodies not only reveals the presence of arginine residues, which could be those involved in the binding of the carboxylates of the hapten, but also the presence of several amino acids in the complementary determining regions which could bind other carboxylates through a network of H bonds.


Metal: Fe
Ligand type: ---
Host protein: Antibody 13G10 / 14H7
Anchoring strategy: Antibody
Optimization: Chemical & genetic
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

An Artificial Hemoprotein with Inducible Peroxidase‐ and Monooxygenase‐Like Activities

Ricoux, R.

Chem. Eur. J. 2020, 26, 14929-14937, 10.1002/chem.202002434

A novel inducible artificial metalloenzyme obtained by covalent attachment of a manganese(III)-tetraphenylporphyrin (MnTPP) to the artificial bidomain repeat protein, (A3A3′)Y26C, is reported. The protein is part of the αRep family. The biohybrid was fully characterized by MALDI-ToF mass spectrometry, circular dichroism and UV/Vis spectroscopies. The peroxidase and monooxygenase activities were evaluated on the original and modified scaffolds including those that have a) an additional imidazole, b) a specific αRep bA3-2 that is known to induce the opening of the (A3A3′) interdomain region and c) a derivative of the αRep bA3-2 inducer extended with a His6-Tag (His6-bA3-2). Catalytic profiles are highly dependent on the presence of co-catalysts with the best activity obtained with His6-bA3-2. The entire mechanism was rationalized by an integrative molecular modeling study that includes protein–ligand docking and large-scale molecular dynamics. This constitutes the first example of an entirely artificial metalloenzyme with inducible peroxidase and monooxygenase activities, reminiscent of allosteric regulation of natural enzymatic pathways.


Metal: Mn
Ligand type: Porphyrin
Anchoring strategy: Covalent
Optimization: ---
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Crystal Structure of Two Anti-Porphyrin Antibodies with Peroxidase Activity

Golinelli-Pimpaneau, B.

PLoS One 2012, 7, e51128, 10.1371/journal.pone.0051128

We report the crystal structures at 2.05 and 2.45 Å resolution of two antibodies, 13G10 and 14H7, directed against an iron(III)-αααβ-carboxyphenylporphyrin, which display some peroxidase activity. Although these two antibodies differ by only one amino acid in their variable λ-light chain and display 86% sequence identity in their variable heavy chain, their complementary determining regions (CDR) CDRH1 and CDRH3 adopt very different conformations. The presence of Met or Leu residues at positions preceding residue H101 in CDRH3 in 13G10 and 14H7, respectively, yields to shallow combining sites pockets with different shapes that are mainly hydrophobic. The hapten and other carboxyphenyl-derivatized iron(III)-porphyrins have been modeled in the active sites of both antibodies using protein ligand docking with the program GOLD. The hapten is maintained in the antibody pockets of 13G10 and 14H7 by a strong network of hydrogen bonds with two or three carboxylates of the carboxyphenyl substituents of the porphyrin, respectively, as well as numerous stacking and van der Waals interactions with the very hydrophobic CDRH3. However, no amino acid residue was found to chelate the iron. Modeling also allows us to rationalize the recognition of alternative porphyrinic cofactors by the 13G10 and 14H7 antibodies and the effect of imidazole binding on the peroxidase activity of the 13G10/porphyrin complexes.


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 13G10
Anchoring strategy: Antibody
Optimization: Chemical & genetic
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: 4AMK
Notes: ---

Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 14H7
Anchoring strategy: Antibody
Optimization: Chemical & genetic
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: 4AT6
Notes: ---

Substrate Promiscuity of a De Novo Designed Peroxidase

Anderson, J.L.R.

J. Inorg. Biochem. 2021, 217, 111370, 10.1016/j.jinorgbio.2021.111370

The design and construction of de novo enzymes offer potentially facile routes to exploiting powerful chemistries in robust, expressible and customisable protein frameworks, while providing insight into natural enzyme function. To this end, we have recently demonstrated extensive catalytic promiscuity in a heme-containing de novo protein, C45. The diverse transformations that C45 catalyses include substrate oxidation, dehalogenation and carbon‑carbon bond formation. Here we explore the substrate promiscuity of C45's peroxidase activity, screening the de novo enzyme against a panel of peroxidase and dehaloperoxidase substrates. Consistent with the function of natural peroxidases, C45 exhibits a broad spectrum of substrate activities with selectivity dictated primarily by the redox potential of the substrate, and by extension, the active oxidising species in peroxidase chemistry, compounds I and II. Though the comparison of these redox potentials provides a threshold for determining activity for a given substrate, substrate:protein interactions are also likely to play a significant role in determining electron transfer rates from substrate to heme, affecting the kinetic parameters of the enzyme. We also used biomolecular simulation to screen substrates against a computational model of C45 to identify potential interactions and binding sites. Several sites of interest in close proximity to the heme cofactor were discovered, providing insight into the catalytic workings of C45.


Metal: Fe
Ligand type: Porphyrin
Anchoring strategy: Covalent
Optimization: ---
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Thermostable Peroxidase-Activity with a Recombinant Antibody L-Chain-Porphyrin Fe(III) Complex

Imanaka, T.

FEBS Lett. 1995, 375, 273-276, 10.1016/0014-5793(95)01224-3

In order to engineer a new type of catalytic antibody, we attempt to use a monoclonal antibody L chain as a host protein for a porphyrin. TCPP (meso‐tetrakis(4‐carboxyphenyl)porphyine) was chemically synthesized and Balb/c mice were immunized using TCPP as a hapten. Two hybridoma cells (03‐1, 13‐1), that produce monoclonal antibody against TCPP, were obtained. Genes for both H and L chains of monoclonal antibodies were cloned, sequenced and overexpressed using E. coli as a host. ELISA and fluorescence quenching method show that the independent antibody L chains from both Mab03‐1 and Mab13‐1 have specific interaction with TCPP. Furthermore, the recombinant antibody L chain from Mab13‐1 exhibits much higher peroxidase activity than TCPP Fe(III) alone. The enzyme activity was detectable with pyrogallol and ABTS (2,2‐azinobis‐3‐ethylbenzthiazolin‐6‐sulfonic acid) but not with catechol. This new catalytic antibody was extremely thermostable. Optimum temperature of the peroxidase reaction by the complex of 13‐1L chain and TCPP Fe(III) was 90°C, while that the TCPP Fe(III) alone was 60°C.


Metal: Fe
Ligand type: Porphyrin
Anchoring strategy: Antibody
Optimization: ---
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

The Third Generation of Artificial Dye-Decolorizing Peroxidase Rationally Designed in Myoglobin

Lin, Y.-W.

ACS Catal. 2019, 9, 7888-7893, 10.1021/acscatal.9b02226

Approaches to degradation of industrial dyes are desirable, of which bioremediation is more favorable. In addition to the use of native enzymes, rational design of artificial enzymes provides an alternative approach. Meanwhile, few designs can achieve a catalytic activity comparable to that of native enzymes. We have previously designed two generations of artificial dye-decolorizing peroxidases (DyPs) in myoglobin (Mb) by introduction of Tyr43 and Trp138 in the heme pocket; however, the activity is moderate. To improve the activity of the artificial DyP, we herein designed a third generation by introduction of an additional Trp (P88W) to the protein surface, named F43Y/F138W/P88W Mb. The third generation of artificial DyP was shown to exhibit a catalytic efficiency exceeding that of various native DyPs and comparable to that of the most efficient native DyPs. Titration of reactive blue 19 (RB19) and molecular docking studies revealed crucial roles of Trp88 in substrate binding and oxidation, which acts as a catalytic site. This study not only provides clues for heme protein design but also suggests that the artificial DyP has potential applications for bioremediation in the future.


Metal: Fe
Ligand type: Porphyrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Peroxidation
Max TON: 30
ee: ---
PDB: ---
Notes: 3rd generation based on previous studies