4 publications

4 publications

A Structural View of Synthetic Cofactor Integration into [FeFe]-Hydrogenases

Apfel, U.-P.; Happe, T.; Kurisu, G.

Chem. Sci., 2016, 10.1039/C5SC03397G


Metal: Fe
Ligand type: CN; CO; Dithiolate
Anchoring strategy: Dative
Optimization: Chemical
Reaction: H2 evolution
Max TON: ---
ee: ---
PDB: 4XDC
Notes: H2 evolution activity of the ArM: 2874 (mmol H2)*min-1*(mg protein)-1.

Chalcogenide Substitution in the [2Fe] Cluster of [FeFe]-Hydrogenases Conserves High Enzymatic Activity

Apfel, U.-P.; Happe, T.

Dalton Trans., 2017, 10.1039/C7DT03785F


Metal: Fe
Ligand type: CN; CO; Diselenolate
Anchoring strategy: Dative
Optimization: Chemical
Reaction: H2 evolution
Max TON: ---
ee: ---
PDB: 5OEF
Notes: ---

Spontaneous Activation of [FeFe]-Hydrogenases by an Inorganic [2Fe] Active Site Mimic

Happe, T.

Nat. Chem. Biol., 2013, 10.1038/Nchembio.1311


Metal: Fe
Ligand type: CN; CO; Dithiolate
Anchoring strategy: Dative
Optimization: Chemical
Reaction: H2 evolution
Max TON: ---
ee: ---
PDB: ---
Notes: ---

The Plasticity of Redox Cofactors: From Metalloenzymes to Redox-Active DNA

Review

Happe, T.; Hemschemeier, A.

Nat. Rev. Chem., 2018, 10.1038/s41570-018-0029-3


Notes: ---