58 publications

58 publications

A De Novo Designed Metalloenzyme for the Hydration of CO2

Pecoraro, V. L.

Angew. Chem., Int. Ed., 2014, 10.1002/anie.201404925

Protein design will ultimately allow for the creation of artificial enzymes with novel functions and unprecedented stability. To test our current mastery of nature’s approach to catalysis, a ZnII metalloenzyme was prepared using de novo design. α3DH3 folds into a stable single‐stranded three‐helix bundle and binds ZnII with high affinity using His3O coordination. The resulting metalloenzyme catalyzes the hydration of CO2 better than any small molecule model of carbonic anhydrase and with an efficiency within 1400‐fold of the fastest carbonic anhydrase isoform, CAII, and 11‐fold of CAIII.


Metal: Zn
Ligand type: Amino acid
Host protein: α3D peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: ---
Notes: kcat/KM ≈ 3.8*104 M-1*s-1

A Designed Functional Metalloenzyme that Reduces O2 to H2O with Over One Thousand Turnovers

Lu, Y.

Angew. Chem., Int. Ed., 2012, 10.1002/anie.201201981

Rational design of functional enzymes with a high number of turnovers is a challenge, especially those with a complex active site, such as respiratory oxidases. Introducing two His and one Tyr residues into myoglobin resulted in enzymes that reduce O2 to H2O with more than 1000 turnovers (red line, see scheme) and minimal release of reactive oxygen species. The positioning of the Tyr residue is critical for activity.


Metal: Cu
Ligand type: Amino acid
Host protein: Myoglobin (Mb)
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: 1056
ee: ---
PDB: 4FWX
Notes: Sperm whale myoglobin

A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme

Lu, Y.; Wang, J.

J. Am. Chem. Soc., 2015, 10.1021/jacs.5b07119

Terminal oxidases catalyze four-electron reduction of oxygen to water, and the energy harvested is utilized to drive the synthesis of adenosine triphosphate. While much effort has been made to design a catalyst mimicking the function of terminal oxidases, most biomimetic catalysts have much lower activity than native oxidases. Herein we report a designed oxidase in myoglobin with an O2 reduction rate (52 s–1) comparable to that of a native cytochrome (cyt) cbb3 oxidase (50 s–1) under identical conditions. We achieved this goal by engineering more favorable electrostatic interactions between a functional oxidase model designed in sperm whale myoglobin and its native redox partner, cyt b5, resulting in a 400-fold electron transfer (ET) rate enhancement. Achieving high activity equivalent to that of native enzymes in a designed metalloenzyme offers deeper insight into the roles of tunable processes such as ET in oxidase activity and enzymatic function and may extend into applications such as more efficient oxygen reduction reaction catalysts for biofuel cells.


Metal: Cu
Ligand type: Amino acid
Host protein: Myoglobin (Mb)
Anchoring strategy: Dative
Optimization: Genetic
Reaction: O2 reduction
Max TON: ---
ee: ---
PDB: ---
Notes: O2 reduction rates of 52 s-1 were achieved in combination with the native redox partner cyt b5.

A Designed Supramolecular Protein Assembly with In Vivo Enzymatic Activity

Tezcan, F. A.

Science, 2014, 10.1126/science.1259680

The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(kcat/Km)/kuncat] for ampicillin hydrolysis of 2.3 × 106 and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.


Metal: Zn
Ligand type: Amino acid
Host protein: Cytochrome cb562
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: 4U9E
Notes: ---

A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology

Ward, T. R.

J. Am. Chem. Soc., 2013, 10.1021/ja309974s

Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.


Metal: Ir
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 14
ee: 11
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 100
ee: 79
PDB: ---
Notes: ---

A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology

Ward, T. R.

J. Am. Chem. Soc., 2013, 10.1021/ja309974s

Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.


Metal: Ir
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 14
ee: 11
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 100
ee: 79
PDB: ---
Notes: ---

Alteration of the Oxygen-Dependent Reactivity of De Novo Due Ferri Proteins

DeGrado, W. F.

Nat. Chem., 2012, 10.1038/NCHEM.1454

De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N-hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 106-fold increase in the relative rate between the arylamine N-hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites.


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferro 1
Anchoring strategy: Dative
Optimization: Genetic
Reaction: N-Hydroxylation
Max TON: ---
ee: ---
PDB: 2LFD
Notes: ---

An Artificial Di-Iron Oxo-Orotein with Phenol Oxidase Activity

DeGrado, W. F.; Lombardi, A.

Nat. Chem. Biol., 2009, 10.1038/nchembio.257

Here we report the de novo design and NMR structure of a four-helical bundle di-iron protein with phenol oxidase activity. The introduction of the cofactor-binding and phenol-binding sites required the incorporation of residues that were detrimental to the free energy of folding of the protein. Sufficient stability was, however, obtained by optimizing the sequence of a loop distant from the active site.


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferro 1
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Alcohol oxidation
Max TON: >50
ee: ---
PDB: 2KIK
Notes: kcat/KM ≈ 1380 M-1*min-1

Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferro 1
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Amine oxidation
Max TON: ---
ee: ---
PDB: 2KIK
Notes: kcat/KM ≈ 83 M-1*min-1

An Artificial Imine Reductase Based on the Ribonuclease S Scaffold

Ward, T. R.

ChemCatChem, 2014, 10.1002/cctc.201300995


Metal: Ir
Ligand type: Amino acid; Cp*
Host protein: Ribonuclease S
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 4
ee: 18
PDB: ---
Notes: ---

An Artificial Metalloenzyme: Creation of a Designed Copper Binding Site in a Thermostable Protein

Reetz, M. T.

Angew. Chem., Int. Ed., 2010, 10.1002/anie.201002106

Guided by nature: A designed binding site comprising the His/His/Asp motif for CuII complexation has been constructed in a robust protein by site‐specific mutagenesis (see picture). The artificial metalloenzyme catalyzes an enantioselective Diels–Alder reaction.


Metal: Cu
Ligand type: Amino acid
Host protein: tHisF
Anchoring strategy: Dative
Optimization: Genetic
Max TON: 6.7
ee: 46
PDB: ---
Notes: ---

Artificial Dicopper Oxidase: Rational Reprogramming of Bacterial Metallo- b-lactamase into a Catechol Oxidase

Fujieda, N.; Itoh, S.

Chem. - Asian J., 2012, 10.1002/asia.201101014


Metal: Cu
Ligand type: Amino acid
Host protein: β-lactamase
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Catechol oxidation
Max TON: ---
ee: ---
PDB: 2FU7
Notes: ---

Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials

Lombardi, A.; Nastri, F.

Int. J. Mol. Sci., 2018, 10.3390/ijms19102896


Metal: Fe
Ligand type: Amino acid; Porphyrin
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: Immobilization of the ArM on gold surfaces via a lipoic acid anchor.

A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase

Fujieda, N.; Itoh, S.

J. Am. Chem. Soc., 2017, 10.1021/jacs.7b00675


Metal: Os
Ligand type: Amino acid
Host protein: TM1459 cupin
Anchoring strategy: Metal substitution
Optimization: Genetic
Reaction: Dihydroxylation
Max TON: 45
ee: ---
PDB: 5WSE
Notes: Exclusively cis dihydroxylation product obtained

Metal: Os
Ligand type: Amino acid
Host protein: TM1459 cupin
Anchoring strategy: Metal substitution
Optimization: Genetic
Reaction: Dihydroxylation
Max TON: 45
ee: ---
PDB: 5WSF
Notes: Exclusively cis dihydroxylation product obtained

Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation

Rovis, T.; Ward, T. R.

Science, 2012, 10.1126/science.1226132


Metal: Rh
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: C-H activation
Max TON: 95
ee: 82
PDB: ---
Notes: ---

Building Reactive Copper Centers in Human Carbonic Anhydrase II

Emerson, J. P.

J. Biol. Inorg. Chem., 2013, 10.1007/s00775-013-1009-1


Metal: Cu
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: ---
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: 1RZC
Notes: Oxidation of 2-aminophenol with subsequent formation of 2-aminophenoxazinone. Reaction rate = 0.09 s-1

Carbene in Cupredoxin Protein Scaffolds: Replacement of a Histidine Ligand in the Active Site Substantially Alters Copper Redox Properties

Albrecht, M.; Paradisi, F.

Angew. Chem., Int. Ed., 2018, 10.1002/ange.201807168


Metal: Cu
Host protein: Azurin
Anchoring strategy: Dative
Optimization: Chemical & genetic
Reaction: Electron transfer
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering

Kuhlman, B.

Biochemistry, 2012, 10.1021/bi201881p


Metal: Zn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: >50
ee: ---
PDB: 3V1C
Notes: ---

Catalytic Cyclopropanation by Myoglobin Reconstituted with Iron Porphycene: Acceleration of Catalysis due to Rapid Formation of the Carbene Species

Hasegawa, J.-Y.; Lehnert, N.

J. Am. Chem. Soc., 2017, 10.1021/jacs.7b10154


Metal: Fe
Ligand type: Amino acid; Porphycene
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: ---
Reaction: Cyclopropanation
Max TON: ---
ee: ---
PDB: ---
Notes: Cyclopropanation of styrene with ethyl diazoacetate: kcat/KM = 1.3 mM-1 * s-1, trans/cis = 99:1

Catalytic Properties and Specificity of the Extracellular Nuclease of Staphylococcus Aureus

Cuatrecasas, P.

J. Biol. Chem., 1967, PMID 4290246


Metal: Sr
Ligand type: Amino acid
Host protein: Nuclease from S. aureus
Anchoring strategy: Metal substitution
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: DNA cleavage

Catalytic Reduction of NO to N2O by a Designed Heme Copper Center in Myoglobin: Implications for the Role of Metal Ions

Lu, Y.

J. Am. Chem. Soc., 2006, 10.1021/ja058822p


Metal: Cu
Ligand type: Amino acid; Porphyrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Dative
Optimization: Genetic
Max TON: 2400
ee: ---
PDB: ---
Notes: Sperm whale myoglobin

Catalytic Water Oxidation by Iridium-Modified Carbonic Anhydrase

Lee, S.-Y.

Chem. - Asian J., 2017, 10.1002/asia.201701543


Metal: Ir
Ligand type: Amino acid
Anchoring strategy: Metal substitution
Optimization: Chemical
Reaction: Water oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: Sodium periodate as sacrificial oxidant. TOF at pH 7 and 30°C is 39.8 min-1.

Computational Redesign of a Mononuclear Zinc Metalloenzyme for Organophosphate Hydrolysis

Baker, D.

Nat. Chem. Biol., 2012, 10.1038/NChemBio.777


Metal: Zn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Max TON: >140
ee: ---
PDB: 3T1G
Notes: kcat/KM ≈ 104 M-1*s-1

De Novo Design of Catalytic Proteins

DeGrado, W. F.

Proc. Natl. Acad. Sci. U. S. A., 2004, 10.1073/pnas.0404387101


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferro 1
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Alcohol oxidation
Max TON: >100
ee: ---
PDB: ---
Notes: kcat/KM ≈ 1540 M-1*min-1

Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold

Kim, H. S.

Science, 2006, 10.1126/science.1118953


Metal: Zn
Ligand type: Amino acid
Host protein: Glyoxalase II (Human)
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: 2F50
Notes: kcat/KM ≈ 184 M-1*s-1

Designing a Functional Type 2 Copper Center that has Nitrite Reductase Activity Within α-Helical Coiled Coils

Pecoraro, V. L.

Proc. Natl. Acad. Sci. U. S. A., 2012, 10.1073/pnas.1212893110


Metal: Cu
Ligand type: Amino acid
Host protein: TRI peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: >5
ee: ---
PDB: ---
Notes: Nitrite reduction

Design of a Switchable Eliminase

DeGrado, W. F.

Proc. Natl. Acad. Sci. U. S. A., 2011, 10.1073/pnas.1018191108


Metal: Ca
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Kemp elimination
Max TON: >40
ee: ---
PDB: 2KZ2
Notes: Ca acts as allosteric regulator, catalytically active site contains no metal

Direct Hydrogenation of Carbon Dioxide by an Artificial Reductase Obtained by Substituting Rhodium for Zinc in the Carbonic Anhydrase Catalytic Center. A Mechanistic Study

Marino, T.

ACS Catal., 2015, 10.1021/acscatal.5b00185


Metal: Rh
Ligand type: Amino acid
Anchoring strategy: Metal substitution
Optimization: ---
Reaction: Hydrogenation
Max TON: ---
ee: ---
PDB: ---
Notes: Computational study of the reaction mechanism of the formation of HCOOH from CO2

Diruthenium Diacetate-Catalyzed Aerobic Oxidation of Hydroxylamines and Improved Chemoselectivity by Immobilization to Lysozyme

Cardona, F.; Goti, A.; Messori, L.

ChemCatChem, 2017, 10.1002/cctc.201701083


Metal: Ru
Ligand type: Amino acid; OAc
Host protein: Lysozyme
Anchoring strategy: Dative
Optimization: Chemical
Max TON: 1000
ee: ---
PDB: ---
Notes: ---

Engineered Metal Regulation of Trypsin Specificity

Craik, C. S.

Biochemistry, 1995, 10.1021/bi00007a010


Metal: Zn
Ligand type: Amino acid
Host protein: Trypsin
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: ---
Notes: Substrate specificty

Metal: Ni
Ligand type: Amino acid
Host protein: Trypsin
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: ---
Notes: Substrate specificty

Enzyme Repurposing of a Hydrolase as an Emergent Peroxidase Upon Metal Binding

Fujieda, N.; Ward, T. R.

Chem. Sci., 2015, 10.1039/c5sc01065a


Metal: Cu
Ligand type: Amino acid
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 35
ee: ---
PDB: ---
Notes: ---