6 publications
-
Artificial Copper Enzymes for Asymmetric Diels–AlderReactions
-
ChemCatChem 2013, 5, 1184-1191, 10.1002/cctc.201200671
The development of artificial copper enzymes from sterol carrier protein type 2 like domain (SCP‐2L) for the use in asymmetric catalysis was explored. For this purpose, proteins were modified with various nitrogen donor ligands. Maleimide‐containing ligands were found most suitable for selective cysteine bio‐conjugation. Fluorescence spectroscopy was used to confirm copper binding to an introduced phenanthroline ligand, which was introduced in two unique cysteine containing SCP‐2L mutants. Copper adducts of several modified SCP‐2L templates were applied in asymmetric Diels–Alder reactions. A clear influence of both the protein environment and the introduced ligand was found in the asymmetric Diels–Alder reaction between azachalcone and cyclopentadiene. A promising enantioselectivity of 25 % ee was obtained by using SCP‐2L V83C modified with phenanthroline–maleimide ligand. Good endo selectivity was observed for SCP‐2L modified with the dipicolylamine‐based nitrogen donor ligand. These artificial metalloenzymes provide a suitable starting point for the implementation of various available techniques to optimise the performance of this system.
Metal: CuHost protein: Sterol Carrier Protein (SCP)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: ---
-
Artificial Dicopper Oxidase: Rational Reprogramming of Bacterial Metallo- b-lactamase into a Catechol Oxidase
-
Chem. - Asian J. 2012, 7, 1203-1207, 10.1002/asia.201101014
Teaching metalloenzymes new tricks: An artificial type III dicopper oxidase has been developed using a hydrolytic enzyme, metallo‐β‐lactamase, as a metal‐binding platform. The triple mutant D88G/S185H/P224G redesigned by computer‐assisted structural analysis showed spectroscopic features similar to those of type III copper proteins and exhibited a high catalytic activity in the oxidation of catechols under aerobic conditions.
Metal: CuLigand type: Amino acidHost protein: β-lactamaseAnchoring strategy: DativeOptimization: GeneticNotes: ---
-
A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase
-
J. Am. Chem. Soc. 2017, 139, 5149-5155, 10.1021/jacs.7b00675
Thermally stable TM1459 cupin superfamily protein from Thermotoga maritima was repurposed as an osmium (Os) peroxygenase by metal-substitution strategy employing the metal-binding promiscuity. This novel artificial metalloenzyme bears a datively bound Os ion supported by the 4-histidine motif. The well-defined Os center is responsible for not only the catalytic activity but also the thermodynamic stability of the protein folding, leading to the robust biocatalyst (Tm ≈ 120 °C). The spectroscopic analysis and atomic resolution X-ray crystal structures of Os-bound TM1459 revealed two types of donor sets to Os center with octahedral coordination geometry. One includes trans-dioxide, OH, and mer-three histidine imidazoles (O3N3 donor set), whereas another one has four histidine imidazoles plus OH and water molecule in a cis position (O2N4 donor set). The Os-bound TM1459 having the latter donor set (O2N4 donor set) was evaluated as a peroxygenase, which was able to catalyze cis-dihydroxylation of several alkenes efficiently. With the low catalyst loading (0.01% mol), up to 9100 turnover number was achieved for the dihydroxylation of 2-methoxy-6-vinyl-naphthalene (50 mM) using an equivalent of H2O2 as oxidant at 70 °C for 12 h. When octene isomers were dihydroxylated in a preparative scale for 5 h (2% mol cat.), the terminal alkene octene isomers was converted to the corresponding diols in a higher yield as compared with the internal alkenes. The result indicates that the protein scaffold can control the regioselectivity by the steric hindrance. This protein scaffold enhances the efficiency of the reaction by suppressing disproportionation of H2O2 on Os reaction center. Moreover, upon a simple site-directed mutagenesis, the catalytic activity was enhanced by about 3-fold, indicating that Os-TM1459 is evolvable nascent osmium peroxygenase.
Metal: OsLigand type: Amino acidHost protein: TM1459 cupinAnchoring strategy: Metal substitutionOptimization: GeneticNotes: Exclusively cis dihydroxylation product obtained
Metal: OsLigand type: Amino acidHost protein: TM1459 cupinAnchoring strategy: Metal substitutionOptimization: GeneticNotes: Exclusively cis dihydroxylation product obtained
-
Bioinspired Catalyst Design and Artificial Metalloenzymes
Review -
Chem. - Eur. J. 2011, 17, 4680-4698, 10.1002/chem.201003646
Many bioinspired transition‐metal catalysts have been developed over the recent years. In this review the progress in the design and application of ligand systems based on peptides and DNA and the development of artificial metalloenzymes are reviewed with a particular emphasis on the combination of phosphane ligands with powerful molecular recognition and shape selectivity of biomolecules. The various approaches for the assembly of these catalytic systems will be highlighted, and the possibilities that the use of the building blocks of Nature provide for catalyst optimisation strategies are discussed.
Notes: ---
-
Cupin Variants as a Macromolecular Ligand Library for Stereoselective Michael Addition of Nitroalkanes
-
Angew. Chem. 2020, 132, 7791-7794, 10.1002/ange.202000129
Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded β-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantioselective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, calculated substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.
Metal: CuLigand type: Amino acidHost protein: Cupin superfamily protein (TM1459)Anchoring strategy: DativeOptimization: Chemical & geneticNotes: ---
-
Synthesis of Hybrid Transition-Metalloproteins via Thiol-Selective Covalent Anchoring of Rh-Phosphine and Ru-Phenanthroline Complexes
-
Dalton Trans. 2010, 39, 8477, 10.1039/c0dt00239a
The preparation of hybrid transition metalloproteins by thiol-selective incorporation of organometallic rhodium- and ruthenium complexes is described. Phosphine ligands and two rhodium-diphosphine complexes bearing a carboxylic acid group were coupled to the cysteine of PYP R52G, yielding a metalloenzyme active in the rhodium catalyzed hydrogenation of dimethyl itaconate. The successful coupling was shown by 31P NMR spectroscopy and ESI mass spectroscopy. In addition wild-type PYP (PYP WT), PYP R52G and ALBP were successfully modified with a (η6-arene) ruthenium(II) phenanthroline complex via a maleimide linker.
Metal: RhHost protein: Photoactive Yellow Protein (PYP)Anchoring strategy: CovalentOptimization: ---Notes: ---