1 publication

1 publication

Immobilization of an Artificial Imine Reductase Within Silica Nanoparticles Improves its Performance

Shahgaldian, P.; Ward, T.R.

Chem. Commun. 2016, 52, 9462-9465, 10.1039/c6cc04604e

Silica nanoparticles equipped with an artificial imine reductase display remarkable activity towards cyclic imine- and NAD+ reduction. The method, based on immobilization and protection of streptavidin on silica nanoparticles, shields the biotinylated metal cofactor against deactivation yielding over 46 000 turnovers in pure samples and 4000 turnovers in crude cellular extracts.

Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 4554
ee: 89
PDB: ---
Notes: Reaction in nanoparticles