Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

25 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A Chaperonin as Protein Nanoreactor for Atom-Transfer Radical Polymerization

The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom‐transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of N‐isopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein–catalyst conjugate only yielded polymers with PDIs above 1.84.

Metal:

Cu

Host protein:

Thermosome (THS)

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Polymerization

Max TON:

---

ee:

---

PDB:

---

Notes:

Non-ROMP

A Clamp-Like Biohybrid Catalyst for DNA Oxidation

In processive catalysis, a catalyst binds to a substrate and remains bound as it performs several consecutive reactions, as exemplified by DNA polymerases. Processivity is essential in nature and is often mediated by a clamp-like structure that physically tethers the catalyst to its (polymeric) template. In the case of the bacteriophage T4 replisome, a dedicated clamp protein acts as a processivity mediator by encircling DNA and subsequently recruiting its polymerase. Here we use this DNA-binding protein to construct a biohybrid catalyst. Conjugation of the clamp protein to a chemical catalyst with sequence-specific oxidation behaviour formed a catalytic clamp that can be loaded onto a DNA plasmid. The catalytic activity of the biohybrid catalyst was visualized using a procedure based on an atomic force microscopy method that detects and spatially locates oxidized sites in DNA. Varying the experimental conditions enabled switching between processive and distributive catalysis and influencing the sliding direction of this rotaxane-like catalyst.

Metal:

Mn

Ligand type:

Porphyrin

Host protein:

gp45

Anchoring strategy:

Covalent

Optimization:

---

Max TON:

---

ee:

---

PDB:

1CZD

Notes:

---

A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology

Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

14

ee:

11

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

100

ee:

79

PDB:

---

Notes:

---

A Hybrid Ring- Opening Metathesis Polymerization Catalyst Based on an Engineered Variant of the Beta-Barrel Protein FhuA

A β‐barrel protein hybrid catalyst was prepared by covalently anchoring a Grubbs–Hoveyda type olefin metathesis catalyst at a single accessible cysteine amino acid in the barrel interior of a variant of β‐barrel transmembrane protein ferric hydroxamate uptake protein component A (FhuA). Activity of this hybrid catalyst type was demonstrated by ring‐opening metathesis polymerization of a 7‐oxanorbornene derivative in aqueous solution.

Metal:

Ru

Ligand type:

Carbene

Host protein:

FhuA ΔCVFtev

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

955

ee:

---

PDB:

---

Notes:

ROMP

An Enantioselective Artificial Metallo-Hydratase

Direct addition of water to alkenes to generate important chiral alcohols as key motif in a variety of natural products still remains a challenge in organic chemistry. Here, we report the first enantioselective artificial metallo-hydratase, based on the transcription factor LmrR, which catalyses the conjugate addition of water to generate chiral β-hydroxy ketones with enantioselectivities up to 84% ee. A mutagenesis study revealed that an aspartic acid and a phenylalanine located in the active site play a key role in achieving efficient catalysis and high enantioselectivities.

Metal:

Cu

Ligand type:

Phenanthroline

Host protein:

LmrR

Anchoring strategy:

Covalent

Optimization:

Genetic

Max TON:

30

ee:

84

PDB:

3F8B

Notes:

---

Aqueous Phase Transfer Hydrogenation of Aryl Ketones Catalysed by Achiral Ruthenium(II) and Rhodium(III) Complexes and their Papain Conjugates

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

96

ee:

15

PDB:

---

Notes:

---

Artificial Metalloenzymes and Metallopeptide Catalysts for Organic Synthesis

Review

Notes:

---

Biomacromolecules as Ligands for Artificial Metalloenzymes

Review

Notes:

Book chapter

Building Reactive Copper Centers in Human Carbonic Anhydrase II

Metal:

Cu

Ligand type:

Amino acid

Anchoring strategy:

Dative

Optimization:

---

Reaction:

Oxidation

Max TON:

---

ee:

---

PDB:

1RZC

Notes:

Oxidation of 2-aminophenol with subsequent formation of 2-aminophenoxazinone. Reaction rate = 0.09 s-1

C(sp3)–H Bond Hydroxylation Catalyzed by Myoglobin Reconstituted with Manganese Porphycene

Metal:

Mn

Ligand type:

Porphycene

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

---

Reaction:

Hydroxylation

Max TON:

---

ee:

---

PDB:

2WI8

Notes:

---

De Novo Design of Functional Proteins: Toward Artificial Hydrogenases

Review

Notes:

---

Designing Enzyme-Like Catalysts: A Rhodium(II) Metallopeptide Case Study

Review

Notes:

---

Designing Functional Metalloproteins: From Structural to Catalytic Metal Sites

Review

Notes:

---

Fluorescence-Based Assay for the Optimization of the Activity of Artificial Transfer Hydrogenase within a Biocompatible Compartment

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Genetic Optimization of the Catalytic Efficiency of Artificial Imine Reductases Based on Biotin−Streptavidin Technology

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

---

ee:

60

PDB:

---

Notes:

---

Human Carbonic Anhydrase II as Host Protein for the Creation of Artificial Metalloenzymes: The Asymmetric Transfer Hydrogenation of Imines

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

47

ee:

70

PDB:

---

Notes:

---

Influence of Active Site Location on Catalytic Activity in De Novo-Designed Zinc Metalloenzymes

Metal:

Hg; Zn

Ligand type:

Amino acid

Host protein:

TRI peptide

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

3PBJ

Notes:

Influence of position of Zn and Hg ion on catalytic activity of the ArM tested. PDB ID 3PBJ = Structure of an analogue.

Metal-Catalyzed Organic Transformations Inside a Protein Scaffold Using Artificial Metalloenzymes

Review

Notes:

Book chapter

Metal-Conjugated Affinity Labels: A New Concept to Create Enantioselective Artificial Metalloenzymes

Metal:

Rh

Ligand type:

Cp*; Phosphine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

89

ee:

64

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Benzene; Phosphine

Host protein:

Bromelain

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

44

ee:

20

PDB:

---

Notes:

---

Metal Incorporated Horseradish Peroxidase (HRP) Catalyzed Oxidation of Resveratrol: Selective Dimerization or Decomposition

Metal:

Ca; Co; Mn; Ni; Zn

Ligand type:

Undefined

Anchoring strategy:

Undefined

Optimization:

Chemical

Reaction:

Oxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

Oxidation of resveratrol. Dimerisation product obtained.

Metalloprotein Design

Review

Notes:

Book chapter

Protein Delivery of a Ni Catalyst to Photosystem I for Light-Driven Hydrogen Production

Metal:

Ni

Ligand type:

Phosphine

Host protein:

Flavodoxin (Fld)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

H2 evolution

Max TON:

94

ee:

---

PDB:

---

Notes:

Recalculated TON

Metal:

Ni

Ligand type:

Phosphine

Host protein:

Photosystem I (PSI)

Anchoring strategy:

Undefined

Optimization:

---

Reaction:

H2 evolution

Max TON:

1870

ee:

---

PDB:

---

Notes:

Recalculated TON

Spontaneous Activation of [FeFe]-Hydrogenases by an Inorganic [2Fe] Active Site Mimic

Metal:

Fe

Ligand type:

CN; CO; Dithiolate

Anchoring strategy:

Dative

Optimization:

Chemical

Reaction:

H2 evolution

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Structural Basis for Enantioselectivity in the Transfer Hydrogenation of a Ketone Catalyzed by an Artificial Metalloenzyme

Metal:

Rh

Ligand type:

2,2'-Dipyridylamine; Cp*

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

26

PDB:

4KII

Notes:

---

Synthetic Cascades are Enabled by Combining Biocatalysts with Artificial Metalloenzymes

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

100

ee:

> 99

PDB:

---

Notes:

Cascade