2 publications

2 publications

Optimization of and Mechanistic Considerations for the Enantioselective Dihydroxylation of Styrene Catalyzed by Osmate-Laccase-Poly(2-Methyloxazoline) in Organic Solvents

Tiller, J.C.

ChemCatChem 2016, 8, 593-599, 10.1002/cctc.201501083

The Sharpless dihydroxylation of styrene with the artificial metalloenzyme osmate‐laccase‐poly(2‐methyloxazoline) was investigated to find reaction conditions that allow this unique catalyst to reveal its full potential. After changing the co‐oxidizing agent to tert‐butyl hydroperoxide and optimizing the osmate/enzyme ratio, the turnover frequency and the turnover number could be increased by an order of magnitude, showing that the catalyst can compete with classical organometallic catalysts. Varying the metal in the active center showed that osmate is by far the most active catalytic center, but the reaction can also be realized with permanganate and iron(II) salts.


Metal: Os
Ligand type: Undefined
Host protein: Laccase
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Dihydroxylation
Max TON: 842
ee: > 99
PDB: ---
Notes: ---

Polymer Enzyme Conjugates as Chiral Ligands for Sharpless Dihydroxylation of Alkenes in Organic Solvents

Tiller, J.C.

ChemBioChem 2015, 16, 83-90, 10.1002/cbic.201402339

Count Os in: We report organosoluble artificial metalloenzymes, generated from poly(2‐methyl‐oxazoline) enzyme conjugates and osmate as a promising new catalytic system for the dihydroxylation of alkenes in organic media.


Metal: Os
Ligand type: Amino acid
Host protein: Laccase
Anchoring strategy: Metal substitution
Optimization: Chemical
Reaction: Dihydroxylation
Max TON: 80
ee: 98
PDB: ---
Notes: ---