4 publications
-
A Chaperonin as Protein Nanoreactor for Atom-Transfer Radical Polymerization
-
Angew. Chem. Int. Ed. 2014, 53, 1443-1447, 10.1002/anie.201306798
The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom‐transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of N‐isopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein–catalyst conjugate only yielded polymers with PDIs above 1.84.
Metal: CuLigand type: N,N,N’,N’-tetraethyldiethylene triamine (TEDETA)Host protein: Thermosome (THS)Anchoring strategy: CovalentOptimization: ---Notes: Non-ROMP
-
A General Method for Artificial Metalloenzyme Formationthrough Strain-Promoted Azide–Alkyne Cycloaddition
-
ChemBioChem 2014, 15, 223-227, 10.1002/cbic.201300661
Strain‐promoted azide–alkyne cycloaddition (SPAAC) can be used to generate artificial metalloenzymes (ArMs) from scaffold proteins containing a p‐azido‐L‐phenylalanine (Az) residue and catalytically active bicyclononyne‐substituted metal complexes. The high efficiency of this reaction allows rapid ArM formation when using Az residues within the scaffold protein in the presence of cysteine residues or various reactive components of cellular lysate. In general, cofactor‐based ArM formation allows the use of any desired metal complex to build unique inorganic protein materials. SPAAC covalent linkage further decouples the native function of the scaffold from the installation process because it is not affected by native amino acid residues; as long as an Az residue can be incorporated, an ArM can be generated. We have demonstrated the scope of this method with respect to both the scaffold and cofactor components and established that the dirhodium ArMs generated can catalyze the decomposition of diazo compounds and both SiH and olefin insertion reactions involving these carbene precursors.
Metal: RhLigand type: Poly-carboxylic acidHost protein: tHisFAnchoring strategy: CovalentOptimization: ---Notes: ---
Metal: RhLigand type: Poly-carboxylic acidHost protein: tHisFAnchoring strategy: CovalentOptimization: ---Notes: ---
-
Engineering a Dirhodium Artificial Metalloenzyme for Selective Olefin Cyclopropanation
-
Nat. Commun. 2015, 6, 10.1038/ncomms8789
Artificial metalloenzymes (ArMs) formed by incorporating synthetic metal catalysts into protein scaffolds have the potential to impart to chemical reactions selectivity that would be difficult to achieve using metal catalysts alone. In this work, we covalently link an alkyne-substituted dirhodium catalyst to a prolyl oligopeptidase containing a genetically encoded L-4-azidophenylalanine residue to create an ArM that catalyses olefin cyclopropanation. Scaffold mutagenesis is then used to improve the enantioselectivity of this reaction, and cyclopropanation of a range of styrenes and donor–acceptor carbene precursors were accepted. The ArM reduces the formation of byproducts, including those resulting from the reaction of dirhodium–carbene intermediates with water. This shows that an ArM can improve the substrate specificity of a catalyst and, for the first time, the water tolerance of a metal-catalysed reaction. Given the diversity of reactions catalysed by dirhodium complexes, we anticipate that dirhodium ArMs will provide many unique opportunities for selective catalysis.
Metal: RhLigand type: Poly-carboxylic acidHost protein: Prolyl oligopeptidase (POP)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: ---
-
Engineering Dirhodium Artificial Metalloenzymes for Diazo Coupling Cascade Reactions
-
Angew. Chem. Int. Ed. 2021, 60, 23672-23677, 10.1002/anie.202107982
Artificial metalloenzymes (ArMs) are commonly used to control the stereoselectivity of catalytic reactions, but controlling chemoselectivity remains challenging. In this study, we engineer a dirhodium ArM to catalyze diazo cross-coupling to form an alkene that, in a one-pot cascade reaction, is reduced to an alkane with high enantioselectivity (typically >99 % ee) by an alkene reductase. The numerous protein and small molecule components required for the cascade reaction had minimal effect on ArM catalysis. Directed evolution of the ArM led to improved yields and E/Z selectivities for a variety of substrates, which translated to cascade reaction yields. MD simulations of ArM variants were used to understand the structural role of the cofactor on ArM conformational dynamics. These results highlight the ability of ArMs to control both catalyst stereoselectivity and chemoselectivity to enable reactions in complex media that would otherwise lead to undesired side reactions.
Metal: RhLigand type: DirhodiumHost protein: Prolyl oligopeptidase (POP)Anchoring strategy: CovalentOptimization: ---Notes: 61% max combined yield for cascade reactions