3 publications
-
Aqueous Olefin Metathesis: Recent Developments and Applications
Review -
Beilstein J. Org. Chem. 2019, 15, 445-468, 10.3762/bjoc.15.39
Olefin metathesis is one of the most powerful C–C double-bond-forming reactions. Metathesis reactions have had a tremendous impact in organic synthesis, enabling a variety of applications in polymer chemistry, drug discovery and chemical biology. Although challenging, the possibility to perform aqueous metatheses has become an attractive alternative, not only because water is a more sustainable medium, but also to exploit biocompatible conditions. This review focuses on the progress made in aqueous olefin metatheses and their applications in chemical biology.
Notes: ---
-
Artificial Diels–Alderase based on the Transmembrane Protein FhuA
-
Beilstein J. Org. Chem. 2016, 12, 1314-1321, 10.3762/bjoc.12.124
Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVFtev). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels–Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product.
Metal: CuLigand type: TerpyridineHost protein: Ferric hydroxamate uptake protein component: A (FhuA)Anchoring strategy: Cystein-maleimideOptimization: ChemicalNotes: ---
-
Olefin Metathesis Catalysts Embedded in β-Barrel Proteins: Creating Artificial Metalloproteins for Olefin Metathesis
Review -
Beilstein J. Org. Chem. 2018, 14, 2861-2871, 10.3762/bjoc.14.265
This review summarizes the recent progress of Grubbs–Hoveyda (GH) type olefin metathesis catalysts incorporated into the robust fold of β-barrel proteins. Anchoring strategies are discussed and challenges and opportunities in this emerging field are shown from simple small-molecule transformations over ring-opening metathesis polymerizations to in vivo olefin metathesis.
Notes: ---