Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

48 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation

We report on the synthesis of biotinylated (cyclopentadienone)iron tricarbonyl complexes, the in situ generation of the corresponding streptavidin conjugates and their application in asymmetric hydrogenation of imines and ketones.

Metal:

Fe

Ligand type:

CO; Cyclopentadienone

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

20

ee:

34

PDB:

---

Notes:

---

A Highly Active Biohybrid Catalyst for Olefin Metathesis in Water: Impact of a Hydrophobic Cavity in a β-Barrel Protein

A series of Grubbs–Hoveyda type catalyst precursors for olefin metathesis containing a maleimide moiety in the backbone of the NHC ligand was covalently incorporated in the cavity of the β-barrel protein nitrobindin. By using two protein mutants with different cavity sizes and choosing the suitable spacer length, an artificial metalloenzyme for olefin metathesis reactions in water in the absence of any organic cosolvents was obtained. High efficiencies reaching TON > 9000 in the ROMP of a water-soluble 7-oxanorbornene derivative and TON > 100 in ring-closing metathesis (RCM) of 4,4-bis(hydroxymethyl)-1,6-heptadiene in water under relatively mild conditions (pH 6, T = 25–40 °C) were observed.

Metal:

Ru

Ligand type:

Carbene

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

9900

ee:

---

PDB:

---

Notes:

ROMP (cis/trans: 48/52)

Metal:

Ru

Ligand type:

Carbene

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

100

ee:

---

PDB:

---

Notes:

RCM

A Hybrid Ring- Opening Metathesis Polymerization Catalyst Based on an Engineered Variant of the Beta-Barrel Protein FhuA

A β‐barrel protein hybrid catalyst was prepared by covalently anchoring a Grubbs–Hoveyda type olefin metathesis catalyst at a single accessible cysteine amino acid in the barrel interior of a variant of β‐barrel transmembrane protein ferric hydroxamate uptake protein component A (FhuA). Activity of this hybrid catalyst type was demonstrated by ring‐opening metathesis polymerization of a 7‐oxanorbornene derivative in aqueous solution.

Metal:

Ru

Ligand type:

Carbene

Host protein:

FhuA ΔCVFtev

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

955

ee:

---

PDB:

---

Notes:

ROMP

An Artificial Oxygenase Built from Scratch: Substrate Binding Site Identified Using a Docking Approach

The substrate for an artificial iron monooxygenase was selected by using docking calculations. The high catalytic efficiency of the reported enzyme for sulfide oxidation was directly correlated to the predicted substrate binding mode in the protein cavity, thus illustrating the synergetic effect of the substrate binding site, protein scaffold, and catalytic site.

Metal:

Fe

Ligand type:

BPMCN; BPMEN

Host protein:

NikA

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

199

ee:

≤5

PDB:

---

Notes:

---

Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes

Metal:

Ru

Ligand type:

Porphyrin

Host protein:

Antibody SN37.4

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

750

ee:

43

PDB:

---

Notes:

---

Aqueous Phase Transfer Hydrogenation of Aryl Ketones Catalysed by Achiral Ruthenium(II) and Rhodium(III) Complexes and their Papain Conjugates

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

96

ee:

15

PDB:

---

Notes:

---

Artificial Diels–Alderase based on the Transmembrane Protein FhuA

Metal:

Cu

Ligand type:

Terpyridine

Host protein:

FhuA

Anchoring strategy:

Cystein-maleimide

Optimization:

Chemical

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Artificial Metalloenzymes Derived from Bovine β-Lactoglobulin for the Asymmetric Transfer Hydrogenation of an Aryl Ketone – Synthesis, Characterization and Catalytic Activity

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

ß-lactoglobulin

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

14

ee:

32

PDB:

---

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis: The Phenomenon of Protein Accelerated Catalysis

Metal:

Rh

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

Reduction of acetamidoacrylic acid. 3.0-fold protein acceleration.

Metal:

Rh

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

39

PDB:

---

Notes:

Reduction of acetamidoacrylic acid. 12.0-fold protein acceleration.

Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-(Strept)Avidin Technology

Metal:

Ru

Ligand type:

Carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

14

ee:

---

PDB:

---

Notes:

RCM

Metal:

Ru

Ligand type:

Carbene

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

19

ee:

---

PDB:

---

Notes:

RCM

A Structural View of Synthetic Cofactor Integration into [FeFe]-Hydrogenases

Metal:

Fe

Ligand type:

CN; CO; Dithiolate

Anchoring strategy:

Dative

Optimization:

Chemical

Reaction:

H2 evolution

Max TON:

---

ee:

---

PDB:

4XDC

Notes:

H2 evolution activity of the ArM: 2874 (mmol H2)*min-1*(mg protein)-1.

Asymmetric Catalytic Sulfoxidation by a Novel VIV8 Cluster Catalyst in the Presence of Serum Albumin: A Simple and Green Oxidation System

Metal:

V

Anchoring strategy:

Undefined

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

140

ee:

77

PDB:

---

Notes:

Screening with different serum albumins.

Bovine Serum Albumin-Cobalt(II) Schiff Base Complex Hybrid: An Efficient Artificial Metalloenzyme for Enantioselective Sulfoxidation using Hydrogen Peroxide

Metal:

Co

Ligand type:

Amine; Phenolate

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

98

ee:

87

PDB:

---

Notes:

---

Catalytic Water Oxidation by Iridium-Modified Carbonic Anhydrase

Metal:

Ir

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Water oxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

Sodium periodate as sacrificial oxidant. TOF at pH 7 and 30°C is 39.8 min-1.

Chalcogenide Substitution in the [2Fe] Cluster of [FeFe]-Hydrogenases Conserves High Enzymatic Activity

Metal:

Fe

Ligand type:

CN; CO; Diselenolate

Anchoring strategy:

Dative

Optimization:

Chemical

Reaction:

H2 evolution

Max TON:

---

ee:

---

PDB:

5OEF

Notes:

---

Chemically Engineered Papain as Artificial Formate Dehydrogenase for NAD(P)H Regeneration

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

TOF = 52.1 h-1 for NAD+

Chemical Optimization of Artificial Metalloenzymes Based on the Biotin-Avidin Technology: (S)-Selective and Solvent-Tolerant Hydrogenation Catalysts via the Introduction of Chiral Amino Acid Spacers

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Cobaloxime-Based Artificial Hydrogenase

Metal:

Co

Ligand type:

Oxime

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

H2 evolution

Max TON:

5

ee:

---

PDB:

---

Notes:

Sperm whale myoglobin

Copper–Phthalocyanine Conjugates of Serum Albumins as Enantioselective Catalysts in Diels–Alder Reactions

Metal:

Cu

Ligand type:

Phthalocyanine

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Max TON:

45.5

ee:

98

PDB:

---

Notes:

---

Covalent Anchoring of a Racemization Catalyst to CALB-Beads: Towards Dual Immobilization of DKR Catalysts

Metal:

Ru

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Acylation

Max TON:

---

ee:

>99%

PDB:

---

Notes:

Lipase CALB is immobilized on a solid support (Novozym®435). Dynamic kinetic resolution (DKR) of 1-phenylethanol to the acylated product.

Cross-Linked Artificial Enzyme Crystals as Heterogeneous Catalysts for Oxidation Reactions

Metal:

Fe

Ligand type:

---

Host protein:

NikA

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Max TON:

28000

ee:

---

PDB:

5ON0

Notes:

Cross-Linked Enzyme Crystals (CLEC) as catalysts.

Metal:

Fe

Ligand type:

---

Host protein:

NikA

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Max TON:

5900

ee:

---

PDB:

5ON0

Notes:

Cross-Linked Enzyme Crystals (CLEC) as catalysts.

Design of Metal Cofactors Activated by a Protein–Protein Electron Transfer System

Metal:

Fe

Ligand type:

Salophen

Host protein:

Heme oxygenase (HO)

Anchoring strategy:

Reconstitution

Optimization:

Chemical

Reaction:

O2 reduction

Max TON:

---

ee:

---

PDB:

1WZD

Notes:

---

Diruthenium Diacetate-Catalyzed Aerobic Oxidation of Hydroxylamines and Improved Chemoselectivity by Immobilization to Lysozyme

Metal:

Ru

Ligand type:

Amino acid; OAc

Host protein:

Lysozyme

Anchoring strategy:

Dative

Optimization:

Chemical

Max TON:

1000

ee:

---

PDB:

---

Notes:

---

Enantioselective Transfer Hydrogenation of Ketone Catalysed by Artificial Metalloenzymes Derived from Bovine β-Lactoglobulin

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

ß-lactoglobulin

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

34

ee:

26

PDB:

---

Notes:

---

Hybrid [FeFe]-Hydrogenases with Modified Active Sites Show Remarkable Residual Enzymatic Activity

Metal:

Fe

Ligand type:

CN; CO; Dithiolate

Anchoring strategy:

Dative

Optimization:

Chemical

Max TON:

---

ee:

---

PDB:

---

Notes:

H2 evolution: TOF = 450 s-1. H2 oxidation: TOF = 150 s-1.

Hybrid Ruthenium ROMP Catalysts Based on an Engineered Variant of β-Barrel Protein FhuA ΔCVFtev: Effect of Spacer Length

Metal:

Ru

Ligand type:

Carbene

Host protein:

FhuA ΔCVFtev

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

555

ee:

---

PDB:

---

Notes:

ROMP; cis/trans = 58/42

Immobilization of Two Organometallic Complexes into a Single Cage to Construct Protein-Based Microcompartment

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Apo-ferritin

Anchoring strategy:

Dative

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

~2

ee:

15

PDB:

5E2D

Notes:

Tandem reaction (Hydrogenation and Suzuki-Miyaura coupling) to form biphenylethanol from 4-iodoacetophenone and phenylboronic acid. TON and ee are given for the tandem reaction product.

Metal:

Pd

Ligand type:

Allyl; Amino acid

Host protein:

Apo-ferritin

Anchoring strategy:

Dative

Optimization:

Chemical

Max TON:

~1

ee:

15

PDB:

5E2D

Notes:

Tandem reaction (Hydrogenation and Suzuki-Miyaura coupling) to form biphenylethanol from 4-iodoacetophenone and phenylboronic acid.

Manganese Terpyridine Artificial Metalloenzymes for Benzylic Oxygenation and Olefin Epoxidation

Metal:

Mn

Ligand type:

Poly-pyridine

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

Chemical

Max TON:

19.2

ee:

---

PDB:

3EMM

Notes:

---

Metal:

Mn

Ligand type:

Poly-pyridine

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Epoxidation

Max TON:

19.8

ee:

---

PDB:

3EMM

Notes:

---

Metal-Conjugated Affinity Labels: A New Concept to Create Enantioselective Artificial Metalloenzymes

Metal:

Rh

Ligand type:

Cp*; Phosphine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

89

ee:

64

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Benzene; Phosphine

Host protein:

Bromelain

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

44

ee:

20

PDB:

---

Notes:

---

Metal Incorporated Horseradish Peroxidase (HRP) Catalyzed Oxidation of Resveratrol: Selective Dimerization or Decomposition

Metal:

Ca; Co; Mn; Ni; Zn

Ligand type:

Undefined

Anchoring strategy:

Undefined

Optimization:

Chemical

Reaction:

Oxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

Oxidation of resveratrol. Dimerisation product obtained.