5 publications
-
Binding Mechanisms of Half-Sandwich Rh(III) and Ru(II) Arene Complexes on Human Serum Albumin: a Comparative Study
-
J. Biol. Inorg. Chem. 2019, 24, 703-719, 10.1007/s00775-019-01683-0
Various half-sandwich ruthenium(II) arene complexes and rhodium(III) arene complexes have been intensively investigated due to their prominent anticancer activity. The interaction of the organometallic complexes of Ru(η6-p-cymene) and Rh(η5-C5Me5) with human serum albumin (HSA) was studied in detail by a combination of various methods such as ultrafiltration, capillary electrophoresis, 1H NMR spectroscopy, fluorometry and UV–visible spectrophotometry in the presence of 100 mM chloride ions. Binding characteristics of the organometallic ions and their complexes with deferiprone, 2-picolinic acid, maltol, 6-methyl-2-picolinic acid and 2-quinaldic acid were evaluated. Kinetic aspects and reversibility of the albumin binding are also discussed. The effect of low-molecular-mass blood components on the protein binding was studied in addition to the interaction of organorhodium complexes with cell culture medium components. The organometallic ions were found to bind to HSA to a high extent via a coordination bond. Release of the bound metal ions was kinetically hindered and could not be induced by the denaturation of the protein. Binding of the Ru(η6-p-cymene) triaqua cation was much slower (ca. 24 h) compared to the rhodium congener (few min), while their complexes interacted with the protein relatively fast (1–2 h). The studied complexes were bound to HSA coordinatively. The highly stable and kinetically inert 2-picolinate Ru(η6-p-cymene) complex bound in an associative manner preserving its original entity, while lower stability complexes decomposed partly or completely upon binding to HSA. Fast, non-specific and high-affinity binding of the complexes on HSA highlights their coordinative interaction with various types of proteins possibly decreasing effective drug concentration.
Ligand type: Bidentate ligandsHost protein: Human serum albumin (HSA)Anchoring strategy: DativeOptimization: ---Reaction: ---Max TON: ---ee: ---PDB: ---Notes: ---
-
Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase
-
J. Am. Chem. Soc. 2021, 143, 617-622, 10.1021/jacs.0c10882
Devising artificial photoenzymes for abiological bond-forming reactions is of high synthetic value but also a tremendous challenge. Disclosed herein is the first photobiocatalytic cross-coupling of aryl halides enabled by a designer artificial dehalogenase, which features a genetically encoded benzophenone chromophore and site-specifically modified synthetic NiII(bpy) cofactor with tunable proximity to streamline the dual catalysis. Transient absorption studies suggest the likelihood of energy transfer activation in the elementary organometallic event. This design strategy is viable to significantly expand the catalytic repertoire of artificial photoenzymes for useful organic transformations.
Metal: NiLigand type: BipyridineHost protein: CO2-reducing photosensitizer protein (PSP)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: ---
-
Catalytic Cyclopropanation by Myoglobin Reconstituted with Iron Porphycene: Acceleration of Catalysis due to Rapid Formation of the Carbene Species
-
J. Am. Chem. Soc. 2017, 139, 17265-17268, 10.1021/jacs.7b10154
Myoglobin reconstituted with iron porphycene catalyzes the cyclopropanation of styrene with ethyl diazoacetate. Compared to native myoglobin, the reconstituted protein significantly accelerates the catalytic reaction and the kcat/Km value is 26-fold enhanced. Mechanistic studies indicate that the reaction of the reconstituted protein with ethyl diazoacetate is 615-fold faster than that of native myoglobin. The metallocarbene species reacts with styrene with the apparent second-order kinetic constant of 28 mM–1 s–1 at 25 °C. Complementary theoretical studies support efficient carbene formation by the reconstituted protein that results from the strong ligand field of the porphycene and fewer intersystem crossing steps relative to the native protein. From these findings, the substitution of the cofactor with an appropriate metal complex serves as an effective way to generate a new biocatalyst.
Notes: Cyclopropanation of styrene with ethyl diazoacetate: kcat/KM = 1.3 mM-1 * s-1, trans/cis = 99:1
-
Rational Design of a Miniature Photocatalytic CO2-Reducing Enzyme
-
ACS Catal. 2021, 11, 5628-5635, 10.1021/acscatal.1c00287
Photosystem I (PSI) is a very large membrane protein complex (∼1000 kDa) harboring P700*, the strongest reductant known in biological systems, which is responsible for driving NAD(P)+ and ultimately for CO2 reduction. Although PSI is one of the most important components in the photosynthesis machinery, it has remained difficult to enhance PSI functions through genetic engineering due to its enormous complexity. Inspired by PSI’s ability to undergo multiple-step photo-induced electron hopping from P700* to iron–sulfur [Fe4S4] clusters, we designed a 33 kDa miniature photocatalytic CO2-reducing enzyme (mPCE) harboring a chromophore (BpC) and two [Fe4S4] clusters (FeA/FeB). Through reduction potential fine-tuning, we optimized the multiple-step electron hopping from BpC to FeA/FeB, culminating in a CO2/HCOOH conversion quantum efficiency of 1.43%. As mPCE can be overexpressed with a high yield in Escherichia coli cells without requiring synthetic cofactors, further development along this route may result in rapid photo-enzyme quantum yield improvement and functional expansion through an efficient directed evolution process.
Metal: FeLigand type: Amino acidHost protein: Ferredoxin (Fd)Anchoring strategy: DativeOptimization: GeneticNotes: ---
-
Unnatural Biosynthesis by an Engineered Microorganism with Heterologously Expressed Natural Enzymes and an Artificial Metalloenzyme
-
Nat. Chem. 2021, 13, 1186-1191, 10.1038/s41557-021-00801-3
Synthetic biology enables microbial hosts to produce complex molecules from organisms that are rare or difficult to cultivate, but the structures of these molecules are limited to those formed by reactions of natural enzymes. The integration of artificial metalloenzymes (ArMs) that catalyse unnatural reactions into metabolic networks could broaden the cache of molecules produced biosynthetically. Here we report an engineered microbial cell expressing a heterologous biosynthetic pathway, containing both natural enzymes and ArMs, that produces an unnatural product with high diastereoselectivity. We engineered Escherichia coli with a heterologous terpene biosynthetic pathway and an ArM containing an iridium–porphyrin complex that was transported into the cell with a heterologous transport system. We improved the diastereoselectivity and product titre of the unnatural product by evolving the ArM and selecting the appropriate gene induction and cultivation conditions. This work shows that synthetic biology and synthetic chemistry can produce, by combining natural and artificial enzymes in whole cells, molecules that were previously inaccessible to nature.
Notes: TON in vivo of (-)-carvone, WITHOUT limonene biosynthetic genes