10 publications

10 publications

A Highly Specific Metal-Activated Catalytic Antibody

Janda, K.D.; Lerner, R.A.

J. Am. Chem. Soc. 1993, 115, 4906-4907, 10.1021/ja00064a068

n/a


Metal: Zn
Ligand type: Undefined
Host protein: IgG 84A3
Anchoring strategy: Undefined
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: Substrate specificty

An asymmetric catalyst

Akabori, S.; Sakurai, S.

Nature 1956, 178, 323-324, 10.1038/178323b0

Asymmetric synthesis has hitherto succeeded only by using reagents or solvents having the asymmetric configuration.


Metal: Pd
Ligand type: Undefined
Host protein: Silk fibroin fibre
Anchoring strategy: Undefined
Optimization: ---
Reaction: Hydrogenation
Max TON: >22
ee: ---
PDB: ---
Notes: ---

Aqueous Biphasic Hydroformylation Catalysed by Protein-Rhodium Complexes

Marchetti, M.

Adv. Synth. Catal. 2002, 344, 556, 10.1002/1615-4169(200207)344:5<556::AID-ADSC556>3.0.CO;2-E

The water‐soluble complex derived from Rh(CO)2(acac) and human serum albumin (HSA) proved to be efficient in the hydroformylation of several olefin substrates. The chemoselectivity and regioselectivity were generally higher than those obtained by using the classic catalytic systems like TPPTS‐Rh(I) (TPPTS=triphenylphosphine‐3,3′,3″‐trisulfonic acid trisodium salt). Styrene and 1‐octene, for instance, were converted in almost quantitative yields into the corresponding oxo‐aldehydes at 60 °C and 70 atm (CO/H2=1) even at very low Rh(CO)2(acac)/HSA catalyst concentrations. The possibility of easily recovering the Rh(I) compound makes the system environmentally friendly. The circular dichroism technique was useful for demonstrating the Rh(I) binding to the protein and to give information on the stability in solution of the catalytic system. Some other proteins have been used to replace HSA as complexing agent for Rh(I). The results were less impressive than those obtained using HSA and their complexes with Rh(I) were much less stable.


Metal: Rh
Ligand type: Undefined
Anchoring strategy: Undefined
Optimization: ---
Reaction: Hydroformylation
Max TON: 741000
ee: ---
PDB: ---
Notes: ---

Enantioselective Sulfoxidation Mediated by Vanadium-Incorporated Phytase: A Hydrolase Acting as a Peroxidase

Sheldon, R.A.

Chem. Commun. 1998, 1891-1892, 10.1039/a804702b

Phytase (E.C. 3.1.3.8), which in vivo mediates the hydrolysis of phosphate esters, catalyses the enantioselective oxidation of thioanisole with H2O2, both in the presence and absence of vanadate ion, affording the S-sulfoxide in up to 66% ee at 100% conversion.


Metal: V
Ligand type: Undefined
Host protein: Phytase
Anchoring strategy: Undefined
Optimization: ---
Reaction: Sulfoxidation
Max TON: ~194
ee: 66
PDB: ---
Notes: ---

Metal: V
Ligand type: Oxide
Host protein: Phytase
Anchoring strategy: Undefined
Optimization: ---
Reaction: Sulfoxidation
Max TON: 550
ee: 66
PDB: ---
Notes: ---

Generation of a Hybrid Sequence-Specific Single Stranded Deoxyribonuclease

Schultz, P.G.

Science 1987, 238, 1401-1403, 10.1126/science.3685986

The relatively nonspecific single-stranded deoxyribonuclease, staphylococcal nuclease, was selectively fused to an oligonucleotide binding site of defined sequence to generate a hybrid enzyme. A cysteine was substituted for Lys116 in the enzyme by oligonucleotide-directed mutagenesis and coupled to an oligonucleotide that contained a 3'-thiol. The resulting hybrid enzyme cleaved single-stranded DNA at sites adjacent to the oligonucleotide binding site.


Metal: Ca
Ligand type: Undefined
Host protein: Staphylococcal nuclease
Anchoring strategy: ---
Optimization: ---
Max TON: <1
ee: ---
PDB: ---
Notes: Engineered sequence specificity

Metal Incorporated Horseradish Peroxidase (HRP) Catalyzed Oxidation of Resveratrol: Selective Dimerization or Decomposition

Pan, Y.

RSC Adv. 2013, 3, 22976, 10.1039/c3ra43784a

Horseradish Peroxidase (HRP) is a commercially available and prevalently used peroxidase with no specific substrate binding domain. However, after being incorporated with different metal cations, new catalytic functions were found in biomimetic oxidation of resveratrol. Based on the results of screening, Ca, Cu, Fe and Mn incorporated enzymes showed distinctive effects, either decomposition or dimerization products were observed.


Metal: Ca; Co; Mn; Ni; Zn
Ligand type: Undefined
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: Oxidation of resveratrol. Dimerisation product obtained.

Optimization of and Mechanistic Considerations for the Enantioselective Dihydroxylation of Styrene Catalyzed by Osmate-Laccase-Poly(2-Methyloxazoline) in Organic Solvents

Tiller, J.C.

ChemCatChem 2016, 8, 593-599, 10.1002/cctc.201501083

The Sharpless dihydroxylation of styrene with the artificial metalloenzyme osmate‐laccase‐poly(2‐methyloxazoline) was investigated to find reaction conditions that allow this unique catalyst to reveal its full potential. After changing the co‐oxidizing agent to tert‐butyl hydroperoxide and optimizing the osmate/enzyme ratio, the turnover frequency and the turnover number could be increased by an order of magnitude, showing that the catalyst can compete with classical organometallic catalysts. Varying the metal in the active center showed that osmate is by far the most active catalytic center, but the reaction can also be realized with permanganate and iron(II) salts.


Metal: Os
Ligand type: Undefined
Host protein: Laccase
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Dihydroxylation
Max TON: 842
ee: > 99
PDB: ---
Notes: ---

OsO4·Streptavidin: A Tunable Hybrid Catalyst for the Enantioselective cis-Dihydroxylation of Olefins

Ward, T.R.

Angew. Chem. Int. Ed. 2011, 50, 10863-10866, 10.1002/anie.201103632

Taking control: Selective catalysts for olefin dihydroxylation have been generated by the combination of apo‐streptavidin and OsO4. Site‐directed mutagenesis allows improvement of enantioselectivity and even inversion of enantiopreference in certain cases. Notably allyl phenyl sulfide and cis‐β‐methylstyrene were converted with unprecedented enantiomeric excess.


Metal: Os
Ligand type: Undefined
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Dihydroxylation
Max TON: 16
ee: 97
PDB: ---
Notes: ---

Pyridoxamine-Amino Acid Chimeras in Semisynthetic Aminotransferase Mimics

Imperiali, B.

Prot. Eng. 1997, 10, 691-698, 10.1093/protein/10.6.691

The transaminase activity of two new semisynthetic RNase-S proteins incorporating a pyridoxamine moiety at the active site has been evaluated. A chemically competent derivative of pyridoxamine phosphate was incorporated into the C-peptide fragments of these non-covalent protein complexes in the form of an unnatural coenzyme-amino acid chimera, 'Pam'. The chimeric Pam residue integrates the heterocyclic functionality of pyridoxamine phosphate into the side chain of an alpha-amino acid and was introduced instead of Phe8 into the C-peptide sequence via standard solid phase methodology. The two semisynthetic Pam-RNase constructs were designed to probe whether the native ribonuclease catalytic machinery could be enlisted to modulate a pyridoxamine-dependent transamination reaction. Both RNase complexes, H1SP and S1SP, exhibited modest rate enhancements in the Cu(II)-assisted transamination of pyruvate to alanine under single turnover conditions, relative to 5'-deoxypyridoxamine and the uncomplexed C-peptide fragments. Furthermore, multiple turnovers of substrates were achieved in the presence of added L-phenylalanine due to recycling of the pyridoxamine moiety. The modest chiral inductions observed in the catalytic production of alanine and the differences in reactivity between the two proteins could be rationalized by the participation of a general base (His12) in complex H1SP, and by the increased tolerance for large amino acid substrates by complex S1SP, which contains serine at this position. The pyridoxamine-amino acid chimera will be useful in the future for examining the coenzyme structure/ function relationships in a native-like peptidyl architecture.


Metal: Cu
Ligand type: Undefined
Host protein: RNase A
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Transamination
Max TON: ---
ee: 31
PDB: ---
Notes: ---

The Bovine Serum Albumin-2-Phenylpropane-1,2-diolatodioxoosmium(VI) Complex as an Enantioselective Catalyst for cis-Hydroxylation of Alkenes

Kokubo, T.; Okano, M.

J. Chem. Soc., Chem. Commun. 1983, 0, 769-770, 10.1039/C39830000769

The 1:1 complex between an osmate ester and bovine serum albumin was found to be effective as an enantioselective catalyst in the cis-hydroxylation of alkenes, affording diols in up to 68% e.e. and turnover of the catalyst with t-butyl hydroperoxide.


Metal: Os
Ligand type: Undefined
Anchoring strategy: Undefined
Optimization: ---
Reaction: Dihydroxylation
Max TON: 40
ee: 68
PDB: ---
Notes: ---