1 publication

1 publication

Design of Artificial Metalloenzymes for the Reduction of Nicotinamide Cofactors

Pordea, A.

J. Inorg. Biochem. 2021, 220, 111446, 10.1016/j.jinorgbio.2021.111446

Artificial metalloenzymes result from the insertion of a catalytically active metal complex into a biological scaffold, generally a protein devoid of other catalytic functionalities. As such, their design requires efforts to engineer substrate binding, in addition to accommodating the artificial catalyst. Here we constructed and characterised artificial metalloenzymes using alcohol dehydrogenase as starting point, an enzyme which has both a cofactor and a substrate binding pocket. A docking approach was used to determine suitable positions for catalyst anchoring to single cysteine mutants, leading to an artificial metalloenzyme capable to reduce both natural cofactors and the hydrophobic 1-benzylnicotinamide mimic. Kinetic studies revealed that the new construct displayed a Michaelis-Menten behaviour with the native nicotinamide cofactors, which were suggested by docking to bind at a surface exposed site, different compared to their native binding position. On the other hand, the kinetic and docking data suggested that a typical enzyme behaviour was not observed with the hydrophobic 1-benzylnicotinamide mimic, with which binding events were plausible both inside and outside the protein. This work demonstrates an extended substrate scope of the artificial metalloenzymes and provides information about the binding sites of the nicotinamide substrates, which can be exploited to further engineer artificial metalloenzymes for cofactor regeneration.


Metal: Rh
Host protein: Alcohol dehydrogenase
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 1YKF
Notes: ---