Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

10 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

8-Amino-5,6,7,8-tetrahydroquinoline in Iridium(III) Biotinylated Cp* Complex as Artificial Imine Reductase

Diamine ligands I–IV coordinated to an iridium metal complex with the biotin moiety anchored to the Cp* ring were investigated. This strategy, in contrast to the traditional biotin–streptavidin technology that uses a biotinylated ligand in the artificial imine reductase, is practical for envisaging how the enantiodiscrimination by different Streptavidin (Sav) mutants could influence the chiral environment of the metal cofactor. Only in the case of (R)-CAMPY IV did the chirality at the metal centre and the second coordination sphere environment, which was dictated by the host protein, operate in a synergistic way, producing better enantioselectivity at a S112M Sav catalyst/catalyst ratio of 1.0 : 2.5. Under these optimized conditions, the artificial imine reductase afforded a good enantiomeric excess (83%) in the asymmetric transfer hydrogenation of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline.

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

32

ee:

83

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

99

ee:

13

PDB:

---

Notes:

---

8-Amino-5,6,7,8-tetrahydroquinoline in Iridium(III) Biotinylated Cp* Complex as Artificial Imine Reductase

Diamine ligands I–IV coordinated to an iridium metal complex with the biotin moiety anchored to the Cp* ring were investigated. This strategy, in contrast to the traditional biotin–streptavidin technology that uses a biotinylated ligand in the artificial imine reductase, is practical for envisaging how the enantiodiscrimination by different Streptavidin (Sav) mutants could influence the chiral environment of the metal cofactor. Only in the case of (R)-CAMPY IV did the chirality at the metal centre and the second coordination sphere environment, which was dictated by the host protein, operate in a synergistic way, producing better enantioselectivity at a S112M Sav catalyst/catalyst ratio of 1.0 : 2.5. Under these optimized conditions, the artificial imine reductase afforded a good enantiomeric excess (83%) in the asymmetric transfer hydrogenation of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline.

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

32

ee:

83

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

99

ee:

13

PDB:

---

Notes:

---

Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

970

ee:

13

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

158

ee:

82

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Olefin metathesis

Max TON:

105

ee:

---

PDB:

---

Notes:

RCM, biotinylated Hoveyda-Grubbs second generation catalyst

Metal:

---

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Anion-π catalysis

Max TON:

6

ee:

41

PDB:

---

Notes:

No metal

Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

970

ee:

13

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

158

ee:

82

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Olefin metathesis

Max TON:

105

ee:

---

PDB:

---

Notes:

RCM, biotinylated Hoveyda-Grubbs second generation catalyst

Metal:

---

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Anion-π catalysis

Max TON:

6

ee:

41

PDB:

---

Notes:

No metal

Computational Insights on an Artificial Imine Reductase Based on the Biotin-Streptavidin Technology

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

---

ee:

96

PDB:

3PK2

Notes:

Prediction of the enantioselectivity by computational methods.

Efficient in Situ Regeneration of NADH Mimics by an Artificial Metalloenzyme

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

>1980

ee:

---

PDB:

---

Notes:

ArM works in combination with the ene reductase (ER) of the Old Yellow Enzyme family fromThermus scotuductus (TsOYE).

Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

188

ee:

43

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino carboxylic acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4

ee:

21

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Pyrazine amide

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

26

ee:

16

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

12

ee:

13

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Oxazoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

102

ee:

14

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

94

ee:

67

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino amide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

10

ee:

7

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino carboxylic acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

8

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Pyrazine amide

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4

ee:

6

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Oxazoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

8

ee:

0

PDB:

---

Notes:

---

Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

188

ee:

43

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino carboxylic acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4

ee:

21

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Pyrazine amide

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

26

ee:

16

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

0

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

12

ee:

13

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Oxazoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

102

ee:

14

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

94

ee:

67

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino amide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

10

ee:

7

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino carboxylic acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

8

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Pyrazine amide

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4

ee:

6

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

6

ee:

1

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*; Oxazoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

8

ee:

0

PDB:

---

Notes:

---

Library Design and Screening Protocol for Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

183

ee:

71

PDB:

---

Notes:

Purified streptavidin (mutant K121A)

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

42

ee:

59

PDB:

---

Notes:

Cell free extract (mutant Sav K121A) treated with diamide

Metal:

Ru

Ligand type:

N-heterocyclic carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

66

ee:

---

PDB:

---

Notes:

Purified streptavidin (mutant K121A)

Metal:

Ru

Ligand type:

N-heterocyclic carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

18

ee:

---

PDB:

---

Notes:

Cell free extract (mutant Sav K121A immobilised on iminobiotin-sepharose beads)

Library Design and Screening Protocol for Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

183

ee:

71

PDB:

---

Notes:

Purified streptavidin (mutant K121A)

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

42

ee:

59

PDB:

---

Notes:

Cell free extract (mutant Sav K121A) treated with diamide

Metal:

Ru

Ligand type:

N-heterocyclic carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

66

ee:

---

PDB:

---

Notes:

Purified streptavidin (mutant K121A)

Metal:

Ru

Ligand type:

N-heterocyclic carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

18

ee:

---

PDB:

---

Notes:

Cell free extract (mutant Sav K121A immobilised on iminobiotin-sepharose beads)