1 publication

1 publication

Site‐Selective Functionalization of (sp3)C-H Bonds Catalyzed by Artificial Metalloenzymes Containing an Iridium‐Porphyrin Cofactor

Hartwig, J.F.

Angew. Chem. Int. Ed. 2019, 58, 13954-13960, 10.1002/anie.201907460

The selective functionalization of one C-H bond over others in nearly identical steric and electronic environments can facilitate the construction of complex molecules. We report site-selective functionalizations of C-H bonds, differentiated solely by remote substituents, catalyzed by artificial metalloenzymes (ArMs) that are generated from the combination of an evolvable P450 scaffold and an iridium-porphyrin cofactor. The generated systems catalyze the insertion of carbenes into the C-H bonds of arange of phthalan derivatives containing substituents that render the two methylene positions in each phthalan inequivalent. These reactions occur with site-selectivity ratios of up to 17.8:1 and, in most cases, with pairs of enzyme mutants that preferentially form each of the two constitutional isomers. This study demonstrates the potential of abiotic reactions catalyzed by metalloenzymes to functionalize C-H bonds with site selectivity that is difficult to achieve with small-molecule catalysts.

Metal: Ir
Ligand type: Porphyrin
Host protein: Cytochrome P450 (CYP119)
Anchoring strategy: Reconstitution
Optimization: Genetic
Max TON: 2286
ee: 94
PDB: ---
Notes: ---