3 publications

3 publications

Lipase Active Site Covalent Anchoring of Rh(NHC) Catalysts: Towards Chemoselective Artificial Metalloenzymes

Klein Gebbink, R.J.M.

Chem. Commun. 2015, 51, 6792-6795, 10.1039/c4cc09700a

A Rh(NHC) phosphonate complex reacts with the lipases cutinase and Candida antarctica lipase B resulting in the first (soluble) artificial metalloenzymes formed by covalent active site-directed hybridization. When compared to unsupported complexes, these new robust hybrids show enhanced chemoselectivity in the (competitive) hydrogenation of olefins over ketones.


Metal: Rh
Ligand type: Carbene
Host protein: Cutinase
Anchoring strategy: Covalent
Optimization: ---
Reaction: Hydrogenation
Max TON: 20
ee: rac.
PDB: 1CEX
Notes: ---

Metal: Rh
Ligand type: Carbene
Anchoring strategy: Covalent
Optimization: ---
Reaction: Hydrogenation
Max TON: 20
ee: rac.
PDB: 4K6G
Notes: ---

Ring-Closing and Cross-Metathesis with Artificial Metalloenzymes Created by Covalent Active Site- Directed Hybridization of a Lipase

Klein Gebbink, R.J.M.

Chem. - Eur. J. 2015, 21, 15676-15685, 10.1002/chem.201502381

A series of Grubbs‐type catalysts that contain lipase‐inhibiting phosphoester functionalities have been synthesized and reacted with the lipase cutinase, which leads to artificial metalloenzymes for olefin metathesis. The resulting hybrids comprise the organometallic fragment that is covalently bound to the active amino acid residue of the enzyme host in an orthogonal orientation. Differences in reactivity as well as accessibility of the active site by the functionalized inhibitor became evident through variation of the anchoring motif and substituents on the N‐heterocyclic carbene ligand. Such observations led to the design of a hybrid that is active in the ring‐closing metathesis and the cross‐metathesis of N,N‐diallyl‐p‐toluenesulfonamide and allylbenzene, respectively, the latter being the first example of its kind in the field of artificial metalloenzymes.


Metal: Ru
Ligand type: Carbene
Host protein: Cutinase
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 17
ee: ---
PDB: ---
Notes: RCM

Metal: Ru
Ligand type: Carbene
Host protein: Cutinase
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 20
ee: ---
PDB: ---
Notes: Cross metathesis

Symmetry-Related Residues as Promising Hotspots for the Evolution of De Novo Oligomeric Enzymes

Song, W.J.

Chem. Sci. 2021, 12, 5091-5101, 10.1039/d0sc06823c

Directed evolution has provided us with great opportunities and prospects in the synthesis of tailor-made proteins. It, however, often requires at least mid to high throughput screening, necessitating more effective strategies for laboratory evolution. We herein demonstrate that protein symmetry can be a versatile criterion for searching for promising hotspots for the directed evolution of de novo oligomeric enzymes. The randomization of symmetry-related residues located at the rotational axes of artificial metallo-β-lactamase yields drastic effects on catalytic activities, whereas that of non-symmetry-related, yet, proximal residues to the active site results in negligible perturbations. Structural and biochemical analysis of the positive hits indicates that seemingly trivial mutations at symmetry-related spots yield significant alterations in overall structures, metal-coordination geometry, and chemical environments of active sites. Our work implicates that numerous artificially designed and natural oligomeric proteins might have evolutionary advantages of propagating beneficial mutations using their global symmetry.


Metal: Zn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Hydrolysis
Max TON: ---
ee: ---
PDB: 7DCL
Notes: kcat/KM value pver 80 min-1M-1